diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-30 01:12:13 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2022-09-30 01:12:13 +0200 |
commit | c614c472707910658b86bb28b9f02062e6982999 (patch) | |
tree | bd043a8196f9ee3e5339ec7be17116c0ba0cc1ef /text_recognizer/networks/transformer/embeddings/fourier.py | |
parent | 03029695897fff72c9e7a66a3f986877ebb0b0ff (diff) |
Make rotary pos encoding mandatory
Diffstat (limited to 'text_recognizer/networks/transformer/embeddings/fourier.py')
-rw-r--r-- | text_recognizer/networks/transformer/embeddings/fourier.py | 36 |
1 files changed, 0 insertions, 36 deletions
diff --git a/text_recognizer/networks/transformer/embeddings/fourier.py b/text_recognizer/networks/transformer/embeddings/fourier.py deleted file mode 100644 index 28da7a1..0000000 --- a/text_recognizer/networks/transformer/embeddings/fourier.py +++ /dev/null @@ -1,36 +0,0 @@ -"""Fourier positional embedding.""" -import numpy as np -import torch -from torch import Tensor, nn - - -class PositionalEncoding(nn.Module): - """Encodes a sense of distance or time for transformer networks.""" - - def __init__(self, dim: int, dropout_rate: float, max_len: int = 1000) -> None: - super().__init__() - self.dropout = nn.Dropout(p=dropout_rate) - pe = self.make_pe(dim, max_len) - self.register_buffer("pe", pe) - - @staticmethod - def make_pe(hidden_dim: int, max_len: int) -> Tensor: - """Returns positional encoding.""" - pe = torch.zeros(max_len, hidden_dim) - position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) - div_term = torch.exp( - torch.arange(0, hidden_dim, 2).float() * (-np.log(10000.0) / hidden_dim) - ) - - pe[:, 0::2] = torch.sin(position * div_term) - pe[:, 1::2] = torch.cos(position * div_term) - pe = pe.unsqueeze(1) - return pe - - def forward(self, x: Tensor) -> Tensor: - """Encodes the tensor with a postional embedding.""" - # [T, B, D] - if x.shape[2] != self.pe.shape[2]: - raise ValueError("x shape does not match pe in the 3rd dim.") - x = x + self.pe[: x.shape[0]] - return self.dropout(x) |