diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-05-02 13:51:15 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-05-02 13:51:15 +0200 |
commit | 1d0977585f01c42e9f6280559a1a98037907a62e (patch) | |
tree | 7e86dd71b163f3138ed2658cb52c44e805f21539 /text_recognizer/networks/transformer/transformer.py | |
parent | 58ae7154aa945cfe5a46592cc1dfb28f0a4e51b3 (diff) |
Implemented training script with hydra
Diffstat (limited to 'text_recognizer/networks/transformer/transformer.py')
-rw-r--r-- | text_recognizer/networks/transformer/transformer.py | 520 |
1 files changed, 260 insertions, 260 deletions
diff --git a/text_recognizer/networks/transformer/transformer.py b/text_recognizer/networks/transformer/transformer.py index 5ac2787..d49c85a 100644 --- a/text_recognizer/networks/transformer/transformer.py +++ b/text_recognizer/networks/transformer/transformer.py @@ -1,260 +1,260 @@ -"""Transfomer module.""" -import copy -from typing import Dict, Optional, Type, Union - -import numpy as np -import torch -from torch import nn -from torch import Tensor -import torch.nn.functional as F - -from text_recognizer.networks.transformer.attention import MultiHeadAttention -from text_recognizer.networks.util import activation_function - - -class GEGLU(nn.Module): - """GLU activation for improving feedforward activations.""" - - def __init__(self, dim_in: int, dim_out: int) -> None: - super().__init__() - self.proj = nn.Linear(dim_in, dim_out * 2) - - def forward(self, x: Tensor) -> Tensor: - """Forward propagation.""" - x, gate = self.proj(x).chunk(2, dim=-1) - return x * F.gelu(gate) - - -def _get_clones(module: Type[nn.Module], num_layers: int) -> nn.ModuleList: - return nn.ModuleList([copy.deepcopy(module) for _ in range(num_layers)]) - - -class _IntraLayerConnection(nn.Module): - """Preforms the residual connection inside the transfomer blocks and applies layernorm.""" - - def __init__(self, dropout_rate: float, hidden_dim: int) -> None: - super().__init__() - self.norm = nn.LayerNorm(normalized_shape=hidden_dim) - self.dropout = nn.Dropout(p=dropout_rate) - - def forward(self, src: Tensor, residual: Tensor) -> Tensor: - return self.norm(self.dropout(src) + residual) - - -class FeedForward(nn.Module): - def __init__( - self, - hidden_dim: int, - expansion_dim: int, - dropout_rate: float, - activation: str = "relu", - ) -> None: - super().__init__() - - in_projection = ( - nn.Sequential( - nn.Linear(hidden_dim, expansion_dim), activation_function(activation) - ) - if activation != "glu" - else GEGLU(hidden_dim, expansion_dim) - ) - - self.layer = nn.Sequential( - in_projection, - nn.Dropout(p=dropout_rate), - nn.Linear(in_features=expansion_dim, out_features=hidden_dim), - ) - - def forward(self, x: Tensor) -> Tensor: - return self.layer(x) - - -class EncoderLayer(nn.Module): - """Transfomer encoding layer.""" - - def __init__( - self, - hidden_dim: int, - num_heads: int, - expansion_dim: int, - dropout_rate: float, - activation: str = "relu", - ) -> None: - super().__init__() - self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate) - self.mlp = FeedForward(hidden_dim, expansion_dim, dropout_rate, activation) - self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim) - self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim) - - def forward(self, src: Tensor, mask: Optional[Tensor] = None) -> Tensor: - """Forward pass through the encoder.""" - # First block. - # Multi head attention. - out, _ = self.self_attention(src, src, src, mask) - - # Add & norm. - out = self.block1(out, src) - - # Second block. - # Apply 1D-convolution. - mlp_out = self.mlp(out) - - # Add & norm. - out = self.block2(mlp_out, out) - - return out - - -class Encoder(nn.Module): - """Transfomer encoder module.""" - - def __init__( - self, - num_layers: int, - encoder_layer: Type[nn.Module], - norm: Optional[Type[nn.Module]] = None, - ) -> None: - super().__init__() - self.layers = _get_clones(encoder_layer, num_layers) - self.norm = norm - - def forward(self, src: Tensor, src_mask: Optional[Tensor] = None) -> Tensor: - """Forward pass through all encoder layers.""" - for layer in self.layers: - src = layer(src, src_mask) - - if self.norm is not None: - src = self.norm(src) - - return src - - -class DecoderLayer(nn.Module): - """Transfomer decoder layer.""" - - def __init__( - self, - hidden_dim: int, - num_heads: int, - expansion_dim: int, - dropout_rate: float = 0.0, - activation: str = "relu", - ) -> None: - super().__init__() - self.hidden_dim = hidden_dim - self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate) - self.multihead_attention = MultiHeadAttention( - hidden_dim, num_heads, dropout_rate - ) - self.mlp = FeedForward(hidden_dim, expansion_dim, dropout_rate, activation) - self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim) - self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim) - self.block3 = _IntraLayerConnection(dropout_rate, hidden_dim) - - def forward( - self, - trg: Tensor, - memory: Tensor, - trg_mask: Optional[Tensor] = None, - memory_mask: Optional[Tensor] = None, - ) -> Tensor: - """Forward pass of the layer.""" - out, _ = self.self_attention(trg, trg, trg, trg_mask) - trg = self.block1(out, trg) - - out, _ = self.multihead_attention(trg, memory, memory, memory_mask) - trg = self.block2(out, trg) - - out = self.mlp(trg) - out = self.block3(out, trg) - - return out - - -class Decoder(nn.Module): - """Transfomer decoder module.""" - - def __init__( - self, - decoder_layer: Type[nn.Module], - num_layers: int, - norm: Optional[Type[nn.Module]] = None, - ) -> None: - super().__init__() - self.layers = _get_clones(decoder_layer, num_layers) - self.num_layers = num_layers - self.norm = norm - - def forward( - self, - trg: Tensor, - memory: Tensor, - trg_mask: Optional[Tensor] = None, - memory_mask: Optional[Tensor] = None, - ) -> Tensor: - """Forward pass through the decoder.""" - for layer in self.layers: - trg = layer(trg, memory, trg_mask, memory_mask) - - if self.norm is not None: - trg = self.norm(trg) - - return trg - - -class Transformer(nn.Module): - """Transformer network.""" - - def __init__( - self, - num_encoder_layers: int, - num_decoder_layers: int, - hidden_dim: int, - num_heads: int, - expansion_dim: int, - dropout_rate: float, - activation: str = "relu", - ) -> None: - super().__init__() - - # Configure encoder. - encoder_norm = nn.LayerNorm(hidden_dim) - encoder_layer = EncoderLayer( - hidden_dim, num_heads, expansion_dim, dropout_rate, activation - ) - self.encoder = Encoder(num_encoder_layers, encoder_layer, encoder_norm) - - # Configure decoder. - decoder_norm = nn.LayerNorm(hidden_dim) - decoder_layer = DecoderLayer( - hidden_dim, num_heads, expansion_dim, dropout_rate, activation - ) - self.decoder = Decoder(decoder_layer, num_decoder_layers, decoder_norm) - - self._reset_parameters() - - def _reset_parameters(self) -> None: - for p in self.parameters(): - if p.dim() > 1: - nn.init.xavier_uniform_(p) - - def forward( - self, - src: Tensor, - trg: Tensor, - src_mask: Optional[Tensor] = None, - trg_mask: Optional[Tensor] = None, - memory_mask: Optional[Tensor] = None, - ) -> Tensor: - """Forward pass through the transformer.""" - if src.shape[0] != trg.shape[0]: - print(trg.shape) - raise RuntimeError("The batch size of the src and trg must be the same.") - if src.shape[2] != trg.shape[2]: - raise RuntimeError( - "The number of features for the src and trg must be the same." - ) - - memory = self.encoder(src, src_mask) - output = self.decoder(trg, memory, trg_mask, memory_mask) - return output +# """Transfomer module.""" +# import copy +# from typing import Dict, Optional, Type, Union +# +# import numpy as np +# import torch +# from torch import nn +# from torch import Tensor +# import torch.nn.functional as F +# +# from text_recognizer.networks.transformer.attention import MultiHeadAttention +# from text_recognizer.networks.util import activation_function +# +# +# class GEGLU(nn.Module): +# """GLU activation for improving feedforward activations.""" +# +# def __init__(self, dim_in: int, dim_out: int) -> None: +# super().__init__() +# self.proj = nn.Linear(dim_in, dim_out * 2) +# +# def forward(self, x: Tensor) -> Tensor: +# """Forward propagation.""" +# x, gate = self.proj(x).chunk(2, dim=-1) +# return x * F.gelu(gate) +# +# +# def _get_clones(module: Type[nn.Module], num_layers: int) -> nn.ModuleList: +# return nn.ModuleList([copy.deepcopy(module) for _ in range(num_layers)]) +# +# +# class _IntraLayerConnection(nn.Module): +# """Preforms the residual connection inside the transfomer blocks and applies layernorm.""" +# +# def __init__(self, dropout_rate: float, hidden_dim: int) -> None: +# super().__init__() +# self.norm = nn.LayerNorm(normalized_shape=hidden_dim) +# self.dropout = nn.Dropout(p=dropout_rate) +# +# def forward(self, src: Tensor, residual: Tensor) -> Tensor: +# return self.norm(self.dropout(src) + residual) +# +# +# class FeedForward(nn.Module): +# def __init__( +# self, +# hidden_dim: int, +# expansion_dim: int, +# dropout_rate: float, +# activation: str = "relu", +# ) -> None: +# super().__init__() +# +# in_projection = ( +# nn.Sequential( +# nn.Linear(hidden_dim, expansion_dim), activation_function(activation) +# ) +# if activation != "glu" +# else GEGLU(hidden_dim, expansion_dim) +# ) +# +# self.layer = nn.Sequential( +# in_projection, +# nn.Dropout(p=dropout_rate), +# nn.Linear(in_features=expansion_dim, out_features=hidden_dim), +# ) +# +# def forward(self, x: Tensor) -> Tensor: +# return self.layer(x) +# +# +# class EncoderLayer(nn.Module): +# """Transfomer encoding layer.""" +# +# def __init__( +# self, +# hidden_dim: int, +# num_heads: int, +# expansion_dim: int, +# dropout_rate: float, +# activation: str = "relu", +# ) -> None: +# super().__init__() +# self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate) +# self.mlp = FeedForward(hidden_dim, expansion_dim, dropout_rate, activation) +# self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim) +# self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim) +# +# def forward(self, src: Tensor, mask: Optional[Tensor] = None) -> Tensor: +# """Forward pass through the encoder.""" +# # First block. +# # Multi head attention. +# out, _ = self.self_attention(src, src, src, mask) +# +# # Add & norm. +# out = self.block1(out, src) +# +# # Second block. +# # Apply 1D-convolution. +# mlp_out = self.mlp(out) +# +# # Add & norm. +# out = self.block2(mlp_out, out) +# +# return out +# +# +# class Encoder(nn.Module): +# """Transfomer encoder module.""" +# +# def __init__( +# self, +# num_layers: int, +# encoder_layer: Type[nn.Module], +# norm: Optional[Type[nn.Module]] = None, +# ) -> None: +# super().__init__() +# self.layers = _get_clones(encoder_layer, num_layers) +# self.norm = norm +# +# def forward(self, src: Tensor, src_mask: Optional[Tensor] = None) -> Tensor: +# """Forward pass through all encoder layers.""" +# for layer in self.layers: +# src = layer(src, src_mask) +# +# if self.norm is not None: +# src = self.norm(src) +# +# return src +# +# +# class DecoderLayer(nn.Module): +# """Transfomer decoder layer.""" +# +# def __init__( +# self, +# hidden_dim: int, +# num_heads: int, +# expansion_dim: int, +# dropout_rate: float = 0.0, +# activation: str = "relu", +# ) -> None: +# super().__init__() +# self.hidden_dim = hidden_dim +# self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate) +# self.multihead_attention = MultiHeadAttention( +# hidden_dim, num_heads, dropout_rate +# ) +# self.mlp = FeedForward(hidden_dim, expansion_dim, dropout_rate, activation) +# self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim) +# self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim) +# self.block3 = _IntraLayerConnection(dropout_rate, hidden_dim) +# +# def forward( +# self, +# trg: Tensor, +# memory: Tensor, +# trg_mask: Optional[Tensor] = None, +# memory_mask: Optional[Tensor] = None, +# ) -> Tensor: +# """Forward pass of the layer.""" +# out, _ = self.self_attention(trg, trg, trg, trg_mask) +# trg = self.block1(out, trg) +# +# out, _ = self.multihead_attention(trg, memory, memory, memory_mask) +# trg = self.block2(out, trg) +# +# out = self.mlp(trg) +# out = self.block3(out, trg) +# +# return out +# +# +# class Decoder(nn.Module): +# """Transfomer decoder module.""" +# +# def __init__( +# self, +# decoder_layer: Type[nn.Module], +# num_layers: int, +# norm: Optional[Type[nn.Module]] = None, +# ) -> None: +# super().__init__() +# self.layers = _get_clones(decoder_layer, num_layers) +# self.num_layers = num_layers +# self.norm = norm +# +# def forward( +# self, +# trg: Tensor, +# memory: Tensor, +# trg_mask: Optional[Tensor] = None, +# memory_mask: Optional[Tensor] = None, +# ) -> Tensor: +# """Forward pass through the decoder.""" +# for layer in self.layers: +# trg = layer(trg, memory, trg_mask, memory_mask) +# +# if self.norm is not None: +# trg = self.norm(trg) +# +# return trg +# +# +# class Transformer(nn.Module): +# """Transformer network.""" +# +# def __init__( +# self, +# num_encoder_layers: int, +# num_decoder_layers: int, +# hidden_dim: int, +# num_heads: int, +# expansion_dim: int, +# dropout_rate: float, +# activation: str = "relu", +# ) -> None: +# super().__init__() +# +# # Configure encoder. +# encoder_norm = nn.LayerNorm(hidden_dim) +# encoder_layer = EncoderLayer( +# hidden_dim, num_heads, expansion_dim, dropout_rate, activation +# ) +# self.encoder = Encoder(num_encoder_layers, encoder_layer, encoder_norm) +# +# # Configure decoder. +# decoder_norm = nn.LayerNorm(hidden_dim) +# decoder_layer = DecoderLayer( +# hidden_dim, num_heads, expansion_dim, dropout_rate, activation +# ) +# self.decoder = Decoder(decoder_layer, num_decoder_layers, decoder_norm) +# +# self._reset_parameters() +# +# def _reset_parameters(self) -> None: +# for p in self.parameters(): +# if p.dim() > 1: +# nn.init.xavier_uniform_(p) +# +# def forward( +# self, +# src: Tensor, +# trg: Tensor, +# src_mask: Optional[Tensor] = None, +# trg_mask: Optional[Tensor] = None, +# memory_mask: Optional[Tensor] = None, +# ) -> Tensor: +# """Forward pass through the transformer.""" +# if src.shape[0] != trg.shape[0]: +# print(trg.shape) +# raise RuntimeError("The batch size of the src and trg must be the same.") +# if src.shape[2] != trg.shape[2]: +# raise RuntimeError( +# "The number of features for the src and trg must be the same." +# ) +# +# memory = self.encoder(src, src_mask) +# output = self.decoder(trg, memory, trg_mask, memory_mask) +# return output |