diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-08-04 05:03:51 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-08-04 05:03:51 +0200 |
commit | d3afa310f77f47553586eeee58e3d3345a754e2c (patch) | |
tree | 08b7de1daf2550852d0a1e4d4d75202f14bb03d4 /text_recognizer/networks/vqvae/vector_quantizer.py | |
parent | 65d5f6c694e73792e40ed693a1381a792da8d277 (diff) |
New VQVAE
Diffstat (limited to 'text_recognizer/networks/vqvae/vector_quantizer.py')
-rw-r--r-- | text_recognizer/networks/vqvae/vector_quantizer.py | 119 |
1 files changed, 0 insertions, 119 deletions
diff --git a/text_recognizer/networks/vqvae/vector_quantizer.py b/text_recognizer/networks/vqvae/vector_quantizer.py deleted file mode 100644 index f92c7ee..0000000 --- a/text_recognizer/networks/vqvae/vector_quantizer.py +++ /dev/null @@ -1,119 +0,0 @@ -"""Implementation of a Vector Quantized Variational AutoEncoder. - -Reference: -https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py - -""" - -from einops import rearrange -import torch -from torch import nn -from torch import Tensor -from torch.nn import functional as F - - -class VectorQuantizer(nn.Module): - """The codebook that contains quantized vectors.""" - - def __init__( - self, num_embeddings: int, embedding_dim: int, beta: float = 0.25 - ) -> None: - super().__init__() - self.K = num_embeddings - self.D = embedding_dim - self.beta = beta - - self.embedding = nn.Embedding(self.K, self.D) - - # Initialize the codebook. - nn.init.uniform_(self.embedding.weight, -1 / self.K, 1 / self.K) - - def discretization_bottleneck(self, latent: Tensor) -> Tensor: - """Computes the code nearest to the latent representation. - - First we compute the posterior categorical distribution, and then map - the latent representation to the nearest element of the embedding. - - Args: - latent (Tensor): The latent representation. - - Shape: - - latent :math:`(B x H x W, D)` - - Returns: - Tensor: The quantized embedding vector. - - """ - # Store latent shape. - b, h, w, d = latent.shape - - # Flatten the latent representation to 2D. - latent = rearrange(latent, "b h w d -> (b h w) d") - - # Compute the L2 distance between the latents and the embeddings. - l2_distance = ( - torch.sum(latent ** 2, dim=1, keepdim=True) - + torch.sum(self.embedding.weight ** 2, dim=1) - - 2 * latent @ self.embedding.weight.t() - ) # [BHW x K] - - # Find the embedding k nearest to each latent. - encoding_indices = torch.argmin(l2_distance, dim=1).unsqueeze(1) # [BHW, 1] - - # Convert to one-hot encodings, aka discrete bottleneck. - one_hot_encoding = torch.zeros( - encoding_indices.shape[0], self.K, device=latent.device - ) - one_hot_encoding.scatter_(1, encoding_indices, 1) # [BHW x K] - - # Embedding quantization. - quantized_latent = one_hot_encoding @ self.embedding.weight # [BHW, D] - quantized_latent = rearrange( - quantized_latent, "(b h w) d -> b h w d", b=b, h=h, w=w - ) - - return quantized_latent - - def vq_loss(self, latent: Tensor, quantized_latent: Tensor) -> Tensor: - """Vector Quantization loss. - - The vector quantization algorithm allows us to create a codebook. The VQ - algorithm works by moving the embedding vectors towards the encoder outputs. - - The embedding loss moves the embedding vector towards the encoder outputs. The - .detach() works as the stop gradient (sg) described in the paper. - - Because the volume of the embedding space is dimensionless, it can arbitarily - grow if the embeddings are not trained as fast as the encoder parameters. To - mitigate this, a commitment loss is added in the second term which makes sure - that the encoder commits to an embedding and that its output does not grow. - - Args: - latent (Tensor): The encoder output. - quantized_latent (Tensor): The quantized latent. - - Returns: - Tensor: The combinded VQ loss. - - """ - embedding_loss = F.mse_loss(quantized_latent, latent.detach()) - commitment_loss = F.mse_loss(quantized_latent.detach(), latent) - return embedding_loss + self.beta * commitment_loss - - def forward(self, latent: Tensor) -> Tensor: - """Forward pass that returns the quantized vector and the vq loss.""" - # Rearrange latent representation s.t. the hidden dim is at the end. - latent = rearrange(latent, "b d h w -> b h w d") - - # Maps latent to the nearest code in the codebook. - quantized_latent = self.discretization_bottleneck(latent) - - loss = self.vq_loss(latent, quantized_latent) - - # Add residue to the quantized latent. - quantized_latent = latent + (quantized_latent - latent).detach() - - # Rearrange the quantized shape back to the original shape. - quantized_latent = rearrange(quantized_latent, "b h w d -> b d h w") - - return quantized_latent, loss |