summaryrefslogtreecommitdiff
path: root/text_recognizer/networks
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-03-20 18:09:06 +0100
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-03-20 18:09:06 +0100
commit7e8e54e84c63171e748bbf09516fd517e6821ace (patch)
tree996093f75a5d488dddf7ea1f159ed343a561ef89 /text_recognizer/networks
parentb0719d84138b6bbe5f04a4982dfca673aea1a368 (diff)
Inital commit for refactoring to lightning
Diffstat (limited to 'text_recognizer/networks')
-rw-r--r--text_recognizer/networks/__init__.py43
-rw-r--r--text_recognizer/networks/beam.py83
-rw-r--r--text_recognizer/networks/cnn.py101
-rw-r--r--text_recognizer/networks/cnn_transformer.py158
-rw-r--r--text_recognizer/networks/crnn.py110
-rw-r--r--text_recognizer/networks/ctc.py58
-rw-r--r--text_recognizer/networks/densenet.py225
-rw-r--r--text_recognizer/networks/lenet.py68
-rw-r--r--text_recognizer/networks/loss/__init__.py2
-rw-r--r--text_recognizer/networks/loss/loss.py69
-rw-r--r--text_recognizer/networks/metrics.py123
-rw-r--r--text_recognizer/networks/mlp.py73
-rw-r--r--text_recognizer/networks/residual_network.py310
-rw-r--r--text_recognizer/networks/stn.py44
-rw-r--r--text_recognizer/networks/transducer/__init__.py3
-rw-r--r--text_recognizer/networks/transducer/tds_conv.py208
-rw-r--r--text_recognizer/networks/transducer/test.py60
-rw-r--r--text_recognizer/networks/transducer/transducer.py410
-rw-r--r--text_recognizer/networks/transformer/__init__.py3
-rw-r--r--text_recognizer/networks/transformer/attention.py93
-rw-r--r--text_recognizer/networks/transformer/positional_encoding.py32
-rw-r--r--text_recognizer/networks/transformer/transformer.py264
-rw-r--r--text_recognizer/networks/unet.py255
-rw-r--r--text_recognizer/networks/util.py89
-rw-r--r--text_recognizer/networks/vit.py150
-rw-r--r--text_recognizer/networks/vq_transformer.py150
-rw-r--r--text_recognizer/networks/vqvae/__init__.py5
-rw-r--r--text_recognizer/networks/vqvae/decoder.py133
-rw-r--r--text_recognizer/networks/vqvae/encoder.py147
-rw-r--r--text_recognizer/networks/vqvae/vector_quantizer.py119
-rw-r--r--text_recognizer/networks/vqvae/vqvae.py74
-rw-r--r--text_recognizer/networks/wide_resnet.py221
32 files changed, 3883 insertions, 0 deletions
diff --git a/text_recognizer/networks/__init__.py b/text_recognizer/networks/__init__.py
new file mode 100644
index 0000000..1521355
--- /dev/null
+++ b/text_recognizer/networks/__init__.py
@@ -0,0 +1,43 @@
+"""Network modules."""
+from .cnn import CNN
+from .cnn_transformer import CNNTransformer
+from .crnn import ConvolutionalRecurrentNetwork
+from .ctc import greedy_decoder
+from .densenet import DenseNet
+from .lenet import LeNet
+from .metrics import accuracy, cer, wer
+from .mlp import MLP
+from .residual_network import ResidualNetwork, ResidualNetworkEncoder
+from .transducer import load_transducer_loss, TDS2d
+from .transformer import Transformer
+from .unet import UNet
+from .util import sliding_window
+from .vit import ViT
+from .vq_transformer import VQTransformer
+from .vqvae import VQVAE
+from .wide_resnet import WideResidualNetwork
+
+__all__ = [
+ "accuracy",
+ "cer",
+ "CNN",
+ "CNNTransformer",
+ "ConvolutionalRecurrentNetwork",
+ "DenseNet",
+ "FCN",
+ "greedy_decoder",
+ "MLP",
+ "LeNet",
+ "load_transducer_loss",
+ "ResidualNetwork",
+ "ResidualNetworkEncoder",
+ "sliding_window",
+ "UNet",
+ "TDS2d",
+ "Transformer",
+ "ViT",
+ "VQTransformer",
+ "VQVAE",
+ "wer",
+ "WideResidualNetwork",
+]
diff --git a/text_recognizer/networks/beam.py b/text_recognizer/networks/beam.py
new file mode 100644
index 0000000..dccccdb
--- /dev/null
+++ b/text_recognizer/networks/beam.py
@@ -0,0 +1,83 @@
+"""Implementation of beam search decoder for a sequence to sequence network.
+
+Stolen from: https://github.com/budzianowski/PyTorch-Beam-Search-Decoding/blob/master/decode_beam.py
+
+"""
+# from typing import List
+# from Queue import PriorityQueue
+
+# from loguru import logger
+# import torch
+# from torch import nn
+# from torch import Tensor
+# import torch.nn.functional as F
+
+
+# class Node:
+# def __init__(
+# self, parent: Node, target_index: int, log_prob: Tensor, length: int
+# ) -> None:
+# self.parent = parent
+# self.target_index = target_index
+# self.log_prob = log_prob
+# self.length = length
+# self.reward = 0.0
+
+# def eval(self, alpha: float = 1.0) -> Tensor:
+# return self.log_prob / (self.length - 1 + 1e-6) + alpha * self.reward
+
+
+# @torch.no_grad()
+# def beam_decoder(
+# network, mapper, device, memory: Tensor = None, max_len: int = 97,
+# ) -> Tensor:
+# beam_width = 10
+# topk = 1 # How many sentences to generate.
+
+# trg_indices = [mapper(mapper.init_token)]
+
+# end_nodes = []
+
+# node = Node(None, trg_indices, 0, 1)
+# nodes = PriorityQueue()
+
+# nodes.put((node.eval(), node))
+# q_size = 1
+
+# # Beam search
+# for _ in range(max_len):
+# if q_size > 2000:
+# logger.warning("Could not decoder input")
+# break
+
+# # Fetch the best node.
+# score, n = nodes.get()
+# decoder_input = n.target_index
+
+# if n.target_index == mapper(mapper.eos_token) and n.parent is not None:
+# end_nodes.append((score, n))
+
+# # If we reached the maximum number of sentences required.
+# if len(end_nodes) >= 1:
+# break
+# else:
+# continue
+
+# # Forward pass with transformer.
+# trg = torch.tensor(trg_indices, device=device)[None, :].long()
+# trg = network.target_embedding(trg)
+# logits = network.decoder(trg=trg, memory=memory, trg_mask=None)
+# log_prob = F.log_softmax(logits, dim=2)
+
+# log_prob, indices = torch.topk(log_prob, beam_width)
+
+# for new_k in range(beam_width):
+# # TODO: continue from here
+# token_index = indices[0][new_k].view(1, -1)
+# log_p = log_prob[0][new_k].item()
+
+# node = Node()
+
+# pass
+
+# pass
diff --git a/text_recognizer/networks/cnn.py b/text_recognizer/networks/cnn.py
new file mode 100644
index 0000000..1807bb9
--- /dev/null
+++ b/text_recognizer/networks/cnn.py
@@ -0,0 +1,101 @@
+"""Implementation of a simple backbone cnn network."""
+from typing import Callable, Dict, Optional, Tuple
+
+from einops.layers.torch import Rearrange
+import torch
+from torch import nn
+
+from text_recognizer.networks.util import activation_function
+
+
+class CNN(nn.Module):
+ """LeNet network for character prediction."""
+
+ def __init__(
+ self,
+ channels: Tuple[int, ...] = (1, 32, 64, 128),
+ kernel_sizes: Tuple[int, ...] = (4, 4, 4),
+ strides: Tuple[int, ...] = (2, 2, 2),
+ max_pool_kernel: int = 2,
+ dropout_rate: float = 0.2,
+ activation: Optional[str] = "relu",
+ ) -> None:
+ """Initialization of the LeNet network.
+
+ Args:
+ channels (Tuple[int, ...]): Channels in the convolutional layers. Defaults to (1, 32, 64).
+ kernel_sizes (Tuple[int, ...]): Kernel sizes in the convolutional layers. Defaults to (3, 3, 2).
+ strides (Tuple[int, ...]): Stride length of the convolutional filter. Defaults to (2, 2, 2).
+ max_pool_kernel (int): 2D max pooling kernel. Defaults to 2.
+ dropout_rate (float): The dropout rate. Defaults to 0.2.
+ activation (Optional[str]): The name of non-linear activation function. Defaults to relu.
+
+ Raises:
+ RuntimeError: if the number of hyperparameters does not match in length.
+
+ """
+ super().__init__()
+
+ if len(channels) - 1 != len(kernel_sizes) and len(kernel_sizes) != len(strides):
+ raise RuntimeError("The number of the hyperparameters does not match.")
+
+ self.cnn = self._build_network(
+ channels, kernel_sizes, strides, max_pool_kernel, dropout_rate, activation,
+ )
+
+ def _build_network(
+ self,
+ channels: Tuple[int, ...],
+ kernel_sizes: Tuple[int, ...],
+ strides: Tuple[int, ...],
+ max_pool_kernel: int,
+ dropout_rate: float,
+ activation: str,
+ ) -> nn.Sequential:
+ # Load activation function.
+ activation_fn = activation_function(activation)
+
+ channels = list(channels)
+ in_channels = channels.pop(0)
+ configuration = zip(channels, kernel_sizes, strides)
+
+ modules = nn.ModuleList([])
+
+ for i, (out_channels, kernel_size, stride) in enumerate(configuration):
+ # Add max pool to reduce output size.
+ if i == len(channels) // 2:
+ modules.append(nn.MaxPool2d(max_pool_kernel))
+ if i == 0:
+ modules.append(
+ nn.Conv2d(
+ in_channels, out_channels, kernel_size, stride=stride, padding=1
+ )
+ )
+ else:
+ modules.append(
+ nn.Sequential(
+ activation_fn,
+ nn.BatchNorm2d(in_channels),
+ nn.Conv2d(
+ in_channels,
+ out_channels,
+ kernel_size,
+ stride=stride,
+ padding=1,
+ ),
+ )
+ )
+
+ if dropout_rate:
+ modules.append(nn.Dropout2d(p=dropout_rate))
+
+ in_channels = out_channels
+
+ return nn.Sequential(*modules)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ """The feedforward pass."""
+ # If batch dimenstion is missing, it needs to be added.
+ if len(x.shape) < 4:
+ x = x[(None,) * (4 - len(x.shape))]
+ return self.cnn(x)
diff --git a/text_recognizer/networks/cnn_transformer.py b/text_recognizer/networks/cnn_transformer.py
new file mode 100644
index 0000000..9150b55
--- /dev/null
+++ b/text_recognizer/networks/cnn_transformer.py
@@ -0,0 +1,158 @@
+"""A CNN-Transformer for image to text recognition."""
+from typing import Dict, Optional, Tuple
+
+from einops import rearrange
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.transformer import PositionalEncoding, Transformer
+from text_recognizer.networks.util import activation_function
+from text_recognizer.networks.util import configure_backbone
+
+
+class CNNTransformer(nn.Module):
+ """CNN+Transfomer for image to sequence prediction."""
+
+ def __init__(
+ self,
+ num_encoder_layers: int,
+ num_decoder_layers: int,
+ hidden_dim: int,
+ vocab_size: int,
+ num_heads: int,
+ adaptive_pool_dim: Tuple,
+ expansion_dim: int,
+ dropout_rate: float,
+ trg_pad_index: int,
+ max_len: int,
+ backbone: str,
+ backbone_args: Optional[Dict] = None,
+ activation: str = "gelu",
+ pool_kernel: Optional[Tuple[int, int]] = None,
+ ) -> None:
+ super().__init__()
+ self.trg_pad_index = trg_pad_index
+ self.vocab_size = vocab_size
+ self.backbone = configure_backbone(backbone, backbone_args)
+
+ if pool_kernel is not None:
+ self.max_pool = nn.MaxPool2d(pool_kernel, stride=2)
+ else:
+ self.max_pool = None
+
+ self.character_embedding = nn.Embedding(self.vocab_size, hidden_dim)
+
+ self.src_position_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim))
+ self.pos_dropout = nn.Dropout(p=dropout_rate)
+ self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate)
+
+ nn.init.normal_(self.character_embedding.weight, std=0.02)
+
+ self.adaptive_pool = (
+ nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None
+ )
+
+ self.transformer = Transformer(
+ num_encoder_layers,
+ num_decoder_layers,
+ hidden_dim,
+ num_heads,
+ expansion_dim,
+ dropout_rate,
+ activation,
+ )
+
+ self.head = nn.Sequential(
+ # nn.Linear(hidden_dim, hidden_dim * 2),
+ # activation_function(activation),
+ nn.Linear(hidden_dim, vocab_size),
+ )
+
+ def _create_trg_mask(self, trg: Tensor) -> Tensor:
+ # Move this outside the transformer.
+ trg_pad_mask = (trg != self.trg_pad_index)[:, None, None]
+ trg_len = trg.shape[1]
+ trg_sub_mask = torch.tril(
+ torch.ones((trg_len, trg_len), device=trg.device)
+ ).bool()
+ trg_mask = trg_pad_mask & trg_sub_mask
+ return trg_mask
+
+ def encoder(self, src: Tensor) -> Tensor:
+ """Forward pass with the encoder of the transformer."""
+ return self.transformer.encoder(src)
+
+ def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor:
+ """Forward pass with the decoder of the transformer + classification head."""
+ return self.head(
+ self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask)
+ )
+
+ def extract_image_features(self, src: Tensor) -> Tensor:
+ """Extracts image features with a backbone neural network.
+
+ It seem like the winning idea was to swap channels and width dimension and collapse
+ the height dimension. The transformer is learning like a baby with this implementation!!! :D
+ Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D
+
+ Args:
+ src (Tensor): Input tensor.
+
+ Returns:
+ Tensor: A input src to the transformer.
+
+ """
+ # If batch dimension is missing, it needs to be added.
+ if len(src.shape) < 4:
+ src = src[(None,) * (4 - len(src.shape))]
+
+ src = self.backbone(src)
+
+ if self.max_pool is not None:
+ src = self.max_pool(src)
+
+ if self.adaptive_pool is not None and len(src.shape) == 4:
+ src = rearrange(src, "b c h w -> b w c h")
+ src = self.adaptive_pool(src)
+ src = src.squeeze(3)
+ elif len(src.shape) == 4:
+ src = rearrange(src, "b c h w -> b (h w) c")
+
+ b, t, _ = src.shape
+
+ src += self.src_position_embedding[:, :t]
+ src = self.pos_dropout(src)
+
+ return src
+
+ def target_embedding(self, trg: Tensor) -> Tuple[Tensor, Tensor]:
+ """Encodes target tensor with embedding and postion.
+
+ Args:
+ trg (Tensor): Target tensor.
+
+ Returns:
+ Tuple[Tensor, Tensor]: Encoded target tensor and target mask.
+
+ """
+ trg = self.character_embedding(trg.long())
+ trg = self.trg_position_encoding(trg)
+ return trg
+
+ def decode_image_features(
+ self, image_features: Tensor, trg: Optional[Tensor] = None
+ ) -> Tensor:
+ """Takes images features from the backbone and decodes them with the transformer."""
+ trg_mask = self._create_trg_mask(trg)
+ trg = self.target_embedding(trg)
+ out = self.transformer(image_features, trg, trg_mask=trg_mask)
+
+ logits = self.head(out)
+ return logits
+
+ def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor:
+ """Forward pass with CNN transfomer."""
+ image_features = self.extract_image_features(x)
+ logits = self.decode_image_features(image_features, trg)
+ return logits
diff --git a/text_recognizer/networks/crnn.py b/text_recognizer/networks/crnn.py
new file mode 100644
index 0000000..778e232
--- /dev/null
+++ b/text_recognizer/networks/crnn.py
@@ -0,0 +1,110 @@
+"""CRNN for handwritten text recognition."""
+from typing import Dict, Tuple
+
+from einops import rearrange, reduce
+from einops.layers.torch import Rearrange
+from loguru import logger
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import configure_backbone
+
+
+class ConvolutionalRecurrentNetwork(nn.Module):
+ """Network that takes a image of a text line and predicts tokens that are in the image."""
+
+ def __init__(
+ self,
+ backbone: str,
+ backbone_args: Dict = None,
+ input_size: int = 128,
+ hidden_size: int = 128,
+ bidirectional: bool = False,
+ num_layers: int = 1,
+ num_classes: int = 80,
+ patch_size: Tuple[int, int] = (28, 28),
+ stride: Tuple[int, int] = (1, 14),
+ recurrent_cell: str = "lstm",
+ avg_pool: bool = False,
+ use_sliding_window: bool = True,
+ ) -> None:
+ super().__init__()
+ self.backbone_args = backbone_args or {}
+ self.patch_size = patch_size
+ self.stride = stride
+ self.sliding_window = (
+ self._configure_sliding_window() if use_sliding_window else None
+ )
+ self.input_size = input_size
+ self.hidden_size = hidden_size
+ self.backbone = configure_backbone(backbone, backbone_args)
+ self.bidirectional = bidirectional
+ self.avg_pool = avg_pool
+
+ if recurrent_cell.upper() in ["LSTM", "GRU"]:
+ recurrent_cell = getattr(nn, recurrent_cell)
+ else:
+ logger.warning(
+ f"Option {recurrent_cell} not valid, defaulting to LSTM cell."
+ )
+ recurrent_cell = nn.LSTM
+
+ self.rnn = recurrent_cell(
+ input_size=self.input_size,
+ hidden_size=self.hidden_size,
+ bidirectional=bidirectional,
+ num_layers=num_layers,
+ )
+
+ decoder_size = self.hidden_size * 2 if self.bidirectional else self.hidden_size
+
+ self.decoder = nn.Sequential(
+ nn.Linear(in_features=decoder_size, out_features=num_classes),
+ nn.LogSoftmax(dim=2),
+ )
+
+ def _configure_sliding_window(self) -> nn.Sequential:
+ return nn.Sequential(
+ nn.Unfold(kernel_size=self.patch_size, stride=self.stride),
+ Rearrange(
+ "b (c h w) t -> b t c h w",
+ h=self.patch_size[0],
+ w=self.patch_size[1],
+ c=1,
+ ),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Converts images to sequence of patches, feeds them to a CNN, then predictions are made with an LSTM."""
+ if len(x.shape) < 4:
+ x = x[(None,) * (4 - len(x.shape))]
+
+ if self.sliding_window is not None:
+ # Create image patches with a sliding window kernel.
+ x = self.sliding_window(x)
+
+ # Rearrange from a sequence of patches for feedforward network.
+ b, t = x.shape[:2]
+ x = rearrange(x, "b t c h w -> (b t) c h w", b=b, t=t)
+
+ x = self.backbone(x)
+
+ # Average pooling.
+ if self.avg_pool:
+ x = reduce(x, "(b t) c h w -> t b c", "mean", b=b, t=t)
+ else:
+ x = rearrange(x, "(b t) h -> t b h", b=b, t=t)
+ else:
+ # Encode the entire image with a CNN, and use the channels as temporal dimension.
+ x = self.backbone(x)
+ x = rearrange(x, "b c h w -> b w c h")
+ if self.adaptive_pool is not None:
+ x = self.adaptive_pool(x)
+ x = x.squeeze(3)
+
+ # Sequence predictions.
+ x, _ = self.rnn(x)
+
+ # Sequence to classification layer.
+ x = self.decoder(x)
+ return x
diff --git a/text_recognizer/networks/ctc.py b/text_recognizer/networks/ctc.py
new file mode 100644
index 0000000..af9b700
--- /dev/null
+++ b/text_recognizer/networks/ctc.py
@@ -0,0 +1,58 @@
+"""Decodes the CTC output."""
+from typing import Callable, List, Optional, Tuple
+
+from einops import rearrange
+import torch
+from torch import Tensor
+
+from text_recognizer.datasets.util import EmnistMapper
+
+
+def greedy_decoder(
+ predictions: Tensor,
+ targets: Optional[Tensor] = None,
+ target_lengths: Optional[Tensor] = None,
+ character_mapper: Optional[Callable] = None,
+ blank_label: int = 79,
+ collapse_repeated: bool = True,
+) -> Tuple[List[str], List[str]]:
+ """Greedy CTC decoder.
+
+ Args:
+ predictions (Tensor): Tenor of network predictions, shape [time, batch, classes].
+ targets (Optional[Tensor]): Target tensor, shape is [batch, targets]. Defaults to None.
+ target_lengths (Optional[Tensor]): Length of each target tensor. Defaults to None.
+ character_mapper (Optional[Callable]): A emnist/character mapper for mapping integers to characters. Defaults
+ to None.
+ blank_label (int): The blank character to be ignored. Defaults to 80.
+ collapse_repeated (bool): Collapase consecutive predictions of the same character. Defaults to True.
+
+ Returns:
+ Tuple[List[str], List[str]]: Tuple of decoded predictions and decoded targets.
+
+ """
+
+ if character_mapper is None:
+ character_mapper = EmnistMapper(pad_token="_") # noqa: S106
+
+ predictions = rearrange(torch.argmax(predictions, dim=2), "t b -> b t")
+ decoded_predictions = []
+ decoded_targets = []
+ for i, prediction in enumerate(predictions):
+ decoded_prediction = []
+ decoded_target = []
+ if targets is not None and target_lengths is not None:
+ for target_index in targets[i][: target_lengths[i]]:
+ if target_index == blank_label:
+ continue
+ decoded_target.append(character_mapper(int(target_index)))
+ decoded_targets.append(decoded_target)
+ for j, index in enumerate(prediction):
+ if index != blank_label:
+ if collapse_repeated and j != 0 and index == prediction[j - 1]:
+ continue
+ decoded_prediction.append(index.item())
+ decoded_predictions.append(
+ [character_mapper(int(pred_index)) for pred_index in decoded_prediction]
+ )
+ return decoded_predictions, decoded_targets
diff --git a/text_recognizer/networks/densenet.py b/text_recognizer/networks/densenet.py
new file mode 100644
index 0000000..7dc58d9
--- /dev/null
+++ b/text_recognizer/networks/densenet.py
@@ -0,0 +1,225 @@
+"""Defines a Densely Connected Convolutional Networks in PyTorch.
+
+Sources:
+https://arxiv.org/abs/1608.06993
+https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
+
+"""
+from typing import List, Optional, Union
+
+from einops.layers.torch import Rearrange
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import activation_function
+
+
+class _DenseLayer(nn.Module):
+ """A dense layer with pre-batch norm -> activation function -> Conv-layer x 2."""
+
+ def __init__(
+ self,
+ in_channels: int,
+ growth_rate: int,
+ bn_size: int,
+ dropout_rate: float,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+ activation_fn = activation_function(activation)
+ self.dense_layer = [
+ nn.BatchNorm2d(in_channels),
+ activation_fn,
+ nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=bn_size * growth_rate,
+ kernel_size=1,
+ stride=1,
+ bias=False,
+ ),
+ nn.BatchNorm2d(bn_size * growth_rate),
+ activation_fn,
+ nn.Conv2d(
+ in_channels=bn_size * growth_rate,
+ out_channels=growth_rate,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ ),
+ ]
+ if dropout_rate:
+ self.dense_layer.append(nn.Dropout(p=dropout_rate))
+
+ self.dense_layer = nn.Sequential(*self.dense_layer)
+
+ def forward(self, x: Union[Tensor, List[Tensor]]) -> Tensor:
+ if isinstance(x, list):
+ x = torch.cat(x, 1)
+ return self.dense_layer(x)
+
+
+class _DenseBlock(nn.Module):
+ def __init__(
+ self,
+ num_layers: int,
+ in_channels: int,
+ bn_size: int,
+ growth_rate: int,
+ dropout_rate: float,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+ self.dense_block = self._build_dense_blocks(
+ num_layers, in_channels, bn_size, growth_rate, dropout_rate, activation,
+ )
+
+ def _build_dense_blocks(
+ self,
+ num_layers: int,
+ in_channels: int,
+ bn_size: int,
+ growth_rate: int,
+ dropout_rate: float,
+ activation: str = "relu",
+ ) -> nn.ModuleList:
+ dense_block = []
+ for i in range(num_layers):
+ dense_block.append(
+ _DenseLayer(
+ in_channels=in_channels + i * growth_rate,
+ growth_rate=growth_rate,
+ bn_size=bn_size,
+ dropout_rate=dropout_rate,
+ activation=activation,
+ )
+ )
+ return nn.ModuleList(dense_block)
+
+ def forward(self, x: Tensor) -> Tensor:
+ feature_maps = [x]
+ for layer in self.dense_block:
+ x = layer(feature_maps)
+ feature_maps.append(x)
+ return torch.cat(feature_maps, 1)
+
+
+class _Transition(nn.Module):
+ def __init__(
+ self, in_channels: int, out_channels: int, activation: str = "relu",
+ ) -> None:
+ super().__init__()
+ activation_fn = activation_function(activation)
+ self.transition = nn.Sequential(
+ nn.BatchNorm2d(in_channels),
+ activation_fn,
+ nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=1,
+ stride=1,
+ bias=False,
+ ),
+ nn.AvgPool2d(kernel_size=2, stride=2),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ return self.transition(x)
+
+
+class DenseNet(nn.Module):
+ """Implementation of Densenet, a network archtecture that concats previous layers for maximum infomation flow."""
+
+ def __init__(
+ self,
+ growth_rate: int = 32,
+ block_config: List[int] = (6, 12, 24, 16),
+ in_channels: int = 1,
+ base_channels: int = 64,
+ num_classes: int = 80,
+ bn_size: int = 4,
+ dropout_rate: float = 0,
+ classifier: bool = True,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+ self.densenet = self._configure_densenet(
+ in_channels,
+ base_channels,
+ num_classes,
+ growth_rate,
+ block_config,
+ bn_size,
+ dropout_rate,
+ classifier,
+ activation,
+ )
+
+ def _configure_densenet(
+ self,
+ in_channels: int,
+ base_channels: int,
+ num_classes: int,
+ growth_rate: int,
+ block_config: List[int],
+ bn_size: int,
+ dropout_rate: float,
+ classifier: bool,
+ activation: str,
+ ) -> nn.Sequential:
+ activation_fn = activation_function(activation)
+ densenet = [
+ nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=base_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ ),
+ nn.BatchNorm2d(base_channels),
+ activation_fn,
+ ]
+
+ num_features = base_channels
+
+ for i, num_layers in enumerate(block_config):
+ densenet.append(
+ _DenseBlock(
+ num_layers=num_layers,
+ in_channels=num_features,
+ bn_size=bn_size,
+ growth_rate=growth_rate,
+ dropout_rate=dropout_rate,
+ activation=activation,
+ )
+ )
+ num_features = num_features + num_layers * growth_rate
+ if i != len(block_config) - 1:
+ densenet.append(
+ _Transition(
+ in_channels=num_features,
+ out_channels=num_features // 2,
+ activation=activation,
+ )
+ )
+ num_features = num_features // 2
+
+ densenet.append(activation_fn)
+
+ if classifier:
+ densenet.append(nn.AdaptiveAvgPool2d((1, 1)))
+ densenet.append(Rearrange("b c h w -> b (c h w)"))
+ densenet.append(
+ nn.Linear(in_features=num_features, out_features=num_classes)
+ )
+
+ return nn.Sequential(*densenet)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass of Densenet."""
+ # If batch dimenstion is missing, it will be added.
+ if len(x.shape) < 4:
+ x = x[(None,) * (4 - len(x.shape))]
+ return self.densenet(x)
diff --git a/text_recognizer/networks/lenet.py b/text_recognizer/networks/lenet.py
new file mode 100644
index 0000000..527e1a0
--- /dev/null
+++ b/text_recognizer/networks/lenet.py
@@ -0,0 +1,68 @@
+"""Implementation of the LeNet network."""
+from typing import Callable, Dict, Optional, Tuple
+
+from einops.layers.torch import Rearrange
+import torch
+from torch import nn
+
+from text_recognizer.networks.util import activation_function
+
+
+class LeNet(nn.Module):
+ """LeNet network for character prediction."""
+
+ def __init__(
+ self,
+ channels: Tuple[int, ...] = (1, 32, 64),
+ kernel_sizes: Tuple[int, ...] = (3, 3, 2),
+ hidden_size: Tuple[int, ...] = (9216, 128),
+ dropout_rate: float = 0.2,
+ num_classes: int = 10,
+ activation_fn: Optional[str] = "relu",
+ ) -> None:
+ """Initialization of the LeNet network.
+
+ Args:
+ channels (Tuple[int, ...]): Channels in the convolutional layers. Defaults to (1, 32, 64).
+ kernel_sizes (Tuple[int, ...]): Kernel sizes in the convolutional layers. Defaults to (3, 3, 2).
+ hidden_size (Tuple[int, ...]): Size of the flattend output form the convolutional layers.
+ Defaults to (9216, 128).
+ dropout_rate (float): The dropout rate. Defaults to 0.2.
+ num_classes (int): Number of classes. Defaults to 10.
+ activation_fn (Optional[str]): The name of non-linear activation function. Defaults to relu.
+
+ """
+ super().__init__()
+
+ activation_fn = activation_function(activation_fn)
+
+ self.layers = [
+ nn.Conv2d(
+ in_channels=channels[0],
+ out_channels=channels[1],
+ kernel_size=kernel_sizes[0],
+ ),
+ activation_fn,
+ nn.Conv2d(
+ in_channels=channels[1],
+ out_channels=channels[2],
+ kernel_size=kernel_sizes[1],
+ ),
+ activation_fn,
+ nn.MaxPool2d(kernel_sizes[2]),
+ nn.Dropout(p=dropout_rate),
+ Rearrange("b c h w -> b (c h w)"),
+ nn.Linear(in_features=hidden_size[0], out_features=hidden_size[1]),
+ activation_fn,
+ nn.Dropout(p=dropout_rate),
+ nn.Linear(in_features=hidden_size[1], out_features=num_classes),
+ ]
+
+ self.layers = nn.Sequential(*self.layers)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ """The feedforward pass."""
+ # If batch dimenstion is missing, it needs to be added.
+ if len(x.shape) < 4:
+ x = x[(None,) * (4 - len(x.shape))]
+ return self.layers(x)
diff --git a/text_recognizer/networks/loss/__init__.py b/text_recognizer/networks/loss/__init__.py
new file mode 100644
index 0000000..b489264
--- /dev/null
+++ b/text_recognizer/networks/loss/__init__.py
@@ -0,0 +1,2 @@
+"""Loss module."""
+from .loss import EmbeddingLoss, LabelSmoothingCrossEntropy
diff --git a/text_recognizer/networks/loss/loss.py b/text_recognizer/networks/loss/loss.py
new file mode 100644
index 0000000..cf9fa0d
--- /dev/null
+++ b/text_recognizer/networks/loss/loss.py
@@ -0,0 +1,69 @@
+"""Implementations of custom loss functions."""
+from pytorch_metric_learning import distances, losses, miners, reducers
+import torch
+from torch import nn
+from torch import Tensor
+from torch.autograd import Variable
+import torch.nn.functional as F
+
+__all__ = ["EmbeddingLoss", "LabelSmoothingCrossEntropy"]
+
+
+class EmbeddingLoss:
+ """Metric loss for training encoders to produce information-rich latent embeddings."""
+
+ def __init__(self, margin: float = 0.2, type_of_triplets: str = "semihard") -> None:
+ self.distance = distances.CosineSimilarity()
+ self.reducer = reducers.ThresholdReducer(low=0)
+ self.loss_fn = losses.TripletMarginLoss(
+ margin=margin, distance=self.distance, reducer=self.reducer
+ )
+ self.miner = miners.MultiSimilarityMiner(epsilon=margin, distance=self.distance)
+
+ def __call__(self, embeddings: Tensor, labels: Tensor) -> Tensor:
+ """Computes the metric loss for the embeddings based on their labels.
+
+ Args:
+ embeddings (Tensor): The laten vectors encoded by the network.
+ labels (Tensor): Labels of the embeddings.
+
+ Returns:
+ Tensor: The metric loss for the embeddings.
+
+ """
+ hard_pairs = self.miner(embeddings, labels)
+ loss = self.loss_fn(embeddings, labels, hard_pairs)
+ return loss
+
+
+class LabelSmoothingCrossEntropy(nn.Module):
+ """Label smoothing loss function."""
+
+ def __init__(
+ self,
+ classes: int,
+ smoothing: float = 0.0,
+ ignore_index: int = None,
+ dim: int = -1,
+ ) -> None:
+ super().__init__()
+ self.confidence = 1.0 - smoothing
+ self.smoothing = smoothing
+ self.ignore_index = ignore_index
+ self.cls = classes
+ self.dim = dim
+
+ def forward(self, pred: Tensor, target: Tensor) -> Tensor:
+ """Calculates the loss."""
+ pred = pred.log_softmax(dim=self.dim)
+ with torch.no_grad():
+ # true_dist = pred.data.clone()
+ true_dist = torch.zeros_like(pred)
+ true_dist.fill_(self.smoothing / (self.cls - 1))
+ true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
+ if self.ignore_index is not None:
+ true_dist[:, self.ignore_index] = 0
+ mask = torch.nonzero(target == self.ignore_index, as_tuple=False)
+ if mask.dim() > 0:
+ true_dist.index_fill_(0, mask.squeeze(), 0.0)
+ return torch.mean(torch.sum(-true_dist * pred, dim=self.dim))
diff --git a/text_recognizer/networks/metrics.py b/text_recognizer/networks/metrics.py
new file mode 100644
index 0000000..2605731
--- /dev/null
+++ b/text_recognizer/networks/metrics.py
@@ -0,0 +1,123 @@
+"""Utility functions for models."""
+from typing import Optional
+
+from einops import rearrange
+import Levenshtein as Lev
+import torch
+from torch import Tensor
+
+from text_recognizer.networks import greedy_decoder
+
+
+def accuracy(outputs: Tensor, labels: Tensor, pad_index: int = 53) -> float:
+ """Computes the accuracy.
+
+ Args:
+ outputs (Tensor): The output from the network.
+ labels (Tensor): Ground truth labels.
+ pad_index (int): Padding index.
+
+ Returns:
+ float: The accuracy for the batch.
+
+ """
+
+ _, predicted = torch.max(outputs, dim=-1)
+
+ # Mask out the pad tokens
+ mask = labels != pad_index
+
+ predicted *= mask
+ labels *= mask
+
+ acc = (predicted == labels).sum().float() / labels.shape[0]
+ acc = acc.item()
+ return acc
+
+
+def cer(
+ outputs: Tensor,
+ targets: Tensor,
+ batch_size: Optional[int] = None,
+ blank_label: Optional[int] = int,
+) -> float:
+ """Computes the character error rate.
+
+ Args:
+ outputs (Tensor): The output from the network.
+ targets (Tensor): Ground truth labels.
+ batch_size (Optional[int]): Batch size if target and output has been flattend.
+ blank_label (Optional[int]): The blank character to be ignored. Defaults to 79.
+
+ Returns:
+ float: The cer for the batch.
+
+ """
+ if len(outputs.shape) == 2 and len(targets.shape) == 1 and batch_size is not None:
+ targets = rearrange(targets, "(b t) -> b t", b=batch_size)
+ outputs = rearrange(outputs, "(b t) v -> t b v", b=batch_size)
+
+ target_lengths = torch.full(
+ size=(outputs.shape[1],), fill_value=targets.shape[1], dtype=torch.long,
+ )
+ decoded_predictions, decoded_targets = greedy_decoder(
+ outputs, targets, target_lengths, blank_label=blank_label,
+ )
+
+ lev_dist = 0
+
+ for prediction, target in zip(decoded_predictions, decoded_targets):
+ prediction = "".join(prediction)
+ target = "".join(target)
+ prediction, target = (
+ prediction.replace(" ", ""),
+ target.replace(" ", ""),
+ )
+ lev_dist += Lev.distance(prediction, target)
+ return lev_dist / len(decoded_predictions)
+
+
+def wer(
+ outputs: Tensor,
+ targets: Tensor,
+ batch_size: Optional[int] = None,
+ blank_label: Optional[int] = int,
+) -> float:
+ """Computes the Word error rate.
+
+ Args:
+ outputs (Tensor): The output from the network.
+ targets (Tensor): Ground truth labels.
+ batch_size (optional[int]): Batch size if target and output has been flattend.
+ blank_label (Optional[int]): The blank character to be ignored. Defaults to 79.
+
+ Returns:
+ float: The wer for the batch.
+
+ """
+ if len(outputs.shape) == 2 and len(targets.shape) == 1 and batch_size is not None:
+ targets = rearrange(targets, "(b t) -> b t", b=batch_size)
+ outputs = rearrange(outputs, "(b t) v -> t b v", b=batch_size)
+
+ target_lengths = torch.full(
+ size=(outputs.shape[1],), fill_value=targets.shape[1], dtype=torch.long,
+ )
+ decoded_predictions, decoded_targets = greedy_decoder(
+ outputs, targets, target_lengths, blank_label=blank_label,
+ )
+
+ lev_dist = 0
+
+ for prediction, target in zip(decoded_predictions, decoded_targets):
+ prediction = "".join(prediction)
+ target = "".join(target)
+
+ b = set(prediction.split() + target.split())
+ word2char = dict(zip(b, range(len(b))))
+
+ w1 = [chr(word2char[w]) for w in prediction.split()]
+ w2 = [chr(word2char[w]) for w in target.split()]
+
+ lev_dist += Lev.distance("".join(w1), "".join(w2))
+
+ return lev_dist / len(decoded_predictions)
diff --git a/text_recognizer/networks/mlp.py b/text_recognizer/networks/mlp.py
new file mode 100644
index 0000000..1101912
--- /dev/null
+++ b/text_recognizer/networks/mlp.py
@@ -0,0 +1,73 @@
+"""Defines the MLP network."""
+from typing import Callable, Dict, List, Optional, Union
+
+from einops.layers.torch import Rearrange
+import torch
+from torch import nn
+
+from text_recognizer.networks.util import activation_function
+
+
+class MLP(nn.Module):
+ """Multi layered perceptron network."""
+
+ def __init__(
+ self,
+ input_size: int = 784,
+ num_classes: int = 10,
+ hidden_size: Union[int, List] = 128,
+ num_layers: int = 3,
+ dropout_rate: float = 0.2,
+ activation_fn: str = "relu",
+ ) -> None:
+ """Initialization of the MLP network.
+
+ Args:
+ input_size (int): The input shape of the network. Defaults to 784.
+ num_classes (int): Number of classes in the dataset. Defaults to 10.
+ hidden_size (Union[int, List]): The number of `neurons` in each hidden layer. Defaults to 128.
+ num_layers (int): The number of hidden layers. Defaults to 3.
+ dropout_rate (float): The dropout rate at each layer. Defaults to 0.2.
+ activation_fn (str): Name of the activation function in the hidden layers. Defaults to
+ relu.
+
+ """
+ super().__init__()
+
+ activation_fn = activation_function(activation_fn)
+
+ if isinstance(hidden_size, int):
+ hidden_size = [hidden_size] * num_layers
+
+ self.layers = [
+ Rearrange("b c h w -> b (c h w)"),
+ nn.Linear(in_features=input_size, out_features=hidden_size[0]),
+ activation_fn,
+ ]
+
+ for i in range(num_layers - 1):
+ self.layers += [
+ nn.Linear(in_features=hidden_size[i], out_features=hidden_size[i + 1]),
+ activation_fn,
+ ]
+
+ if dropout_rate:
+ self.layers.append(nn.Dropout(p=dropout_rate))
+
+ self.layers.append(
+ nn.Linear(in_features=hidden_size[-1], out_features=num_classes)
+ )
+
+ self.layers = nn.Sequential(*self.layers)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ """The feedforward pass."""
+ # If batch dimenstion is missing, it needs to be added.
+ if len(x.shape) < 4:
+ x = x[(None,) * (4 - len(x.shape))]
+ return self.layers(x)
+
+ @property
+ def __name__(self) -> str:
+ """Returns the name of the network."""
+ return "mlp"
diff --git a/text_recognizer/networks/residual_network.py b/text_recognizer/networks/residual_network.py
new file mode 100644
index 0000000..c33f419
--- /dev/null
+++ b/text_recognizer/networks/residual_network.py
@@ -0,0 +1,310 @@
+"""Residual CNN."""
+from functools import partial
+from typing import Callable, Dict, List, Optional, Type, Union
+
+from einops.layers.torch import Rearrange, Reduce
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import activation_function
+
+
+class Conv2dAuto(nn.Conv2d):
+ """Convolution with auto padding based on kernel size."""
+
+ def __init__(self, *args, **kwargs) -> None:
+ super().__init__(*args, **kwargs)
+ self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2)
+
+
+def conv_bn(in_channels: int, out_channels: int, *args, **kwargs) -> nn.Sequential:
+ """3x3 convolution with batch norm."""
+ conv3x3 = partial(Conv2dAuto, kernel_size=3, bias=False,)
+ return nn.Sequential(
+ conv3x3(in_channels, out_channels, *args, **kwargs),
+ nn.BatchNorm2d(out_channels),
+ )
+
+
+class IdentityBlock(nn.Module):
+ """Residual with identity block."""
+
+ def __init__(
+ self, in_channels: int, out_channels: int, activation: str = "relu"
+ ) -> None:
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.blocks = nn.Identity()
+ self.activation_fn = activation_function(activation)
+ self.shortcut = nn.Identity()
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass."""
+ residual = x
+ if self.apply_shortcut:
+ residual = self.shortcut(x)
+ x = self.blocks(x)
+ x += residual
+ x = self.activation_fn(x)
+ return x
+
+ @property
+ def apply_shortcut(self) -> bool:
+ """Check if shortcut should be applied."""
+ return self.in_channels != self.out_channels
+
+
+class ResidualBlock(IdentityBlock):
+ """Residual with nonlinear shortcut."""
+
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ expansion: int = 1,
+ downsampling: int = 1,
+ *args,
+ **kwargs
+ ) -> None:
+ """Short summary.
+
+ Args:
+ in_channels (int): Number of in channels.
+ out_channels (int): umber of out channels.
+ expansion (int): Expansion factor of the out channels. Defaults to 1.
+ downsampling (int): Downsampling factor used in stride. Defaults to 1.
+ *args (type): Extra arguments.
+ **kwargs (type): Extra key value arguments.
+
+ """
+ super().__init__(in_channels, out_channels, *args, **kwargs)
+ self.expansion = expansion
+ self.downsampling = downsampling
+
+ self.shortcut = (
+ nn.Sequential(
+ nn.Conv2d(
+ in_channels=self.in_channels,
+ out_channels=self.expanded_channels,
+ kernel_size=1,
+ stride=self.downsampling,
+ bias=False,
+ ),
+ nn.BatchNorm2d(self.expanded_channels),
+ )
+ if self.apply_shortcut
+ else None
+ )
+
+ @property
+ def expanded_channels(self) -> int:
+ """Computes the expanded output channels."""
+ return self.out_channels * self.expansion
+
+ @property
+ def apply_shortcut(self) -> bool:
+ """Check if shortcut should be applied."""
+ return self.in_channels != self.expanded_channels
+
+
+class BasicBlock(ResidualBlock):
+ """Basic ResNet block."""
+
+ expansion = 1
+
+ def __init__(self, in_channels: int, out_channels: int, *args, **kwargs) -> None:
+ super().__init__(in_channels, out_channels, *args, **kwargs)
+ self.blocks = nn.Sequential(
+ conv_bn(
+ in_channels=self.in_channels,
+ out_channels=self.out_channels,
+ bias=False,
+ stride=self.downsampling,
+ ),
+ self.activation_fn,
+ conv_bn(
+ in_channels=self.out_channels,
+ out_channels=self.expanded_channels,
+ bias=False,
+ ),
+ )
+
+
+class BottleNeckBlock(ResidualBlock):
+ """Bottleneck block to increase depth while minimizing parameter size."""
+
+ expansion = 4
+
+ def __init__(self, in_channels: int, out_channels: int, *args, **kwargs) -> None:
+ super().__init__(in_channels, out_channels, *args, **kwargs)
+ self.blocks = nn.Sequential(
+ conv_bn(
+ in_channels=self.in_channels,
+ out_channels=self.out_channels,
+ kernel_size=1,
+ ),
+ self.activation_fn,
+ conv_bn(
+ in_channels=self.out_channels,
+ out_channels=self.out_channels,
+ kernel_size=3,
+ stride=self.downsampling,
+ ),
+ self.activation_fn,
+ conv_bn(
+ in_channels=self.out_channels,
+ out_channels=self.expanded_channels,
+ kernel_size=1,
+ ),
+ )
+
+
+class ResidualLayer(nn.Module):
+ """ResNet layer."""
+
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ block: BasicBlock = BasicBlock,
+ num_blocks: int = 1,
+ *args,
+ **kwargs
+ ) -> None:
+ super().__init__()
+ downsampling = 2 if in_channels != out_channels else 1
+ self.blocks = nn.Sequential(
+ block(
+ in_channels, out_channels, *args, **kwargs, downsampling=downsampling
+ ),
+ *[
+ block(
+ out_channels * block.expansion,
+ out_channels,
+ downsampling=1,
+ *args,
+ **kwargs
+ )
+ for _ in range(num_blocks - 1)
+ ]
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass."""
+ x = self.blocks(x)
+ return x
+
+
+class ResidualNetworkEncoder(nn.Module):
+ """Encoder network."""
+
+ def __init__(
+ self,
+ in_channels: int = 1,
+ block_sizes: Union[int, List[int]] = (32, 64),
+ depths: Union[int, List[int]] = (2, 2),
+ activation: str = "relu",
+ block: Type[nn.Module] = BasicBlock,
+ levels: int = 1,
+ *args,
+ **kwargs
+ ) -> None:
+ super().__init__()
+ self.block_sizes = (
+ block_sizes if isinstance(block_sizes, list) else [block_sizes] * levels
+ )
+ self.depths = depths if isinstance(depths, list) else [depths] * levels
+ self.activation = activation
+ self.gate = nn.Sequential(
+ nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=self.block_sizes[0],
+ kernel_size=7,
+ stride=2,
+ padding=1,
+ bias=False,
+ ),
+ nn.BatchNorm2d(self.block_sizes[0]),
+ activation_function(self.activation),
+ # nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
+ )
+
+ self.blocks = self._configure_blocks(block)
+
+ def _configure_blocks(
+ self, block: Type[nn.Module], *args, **kwargs
+ ) -> nn.Sequential:
+ channels = [self.block_sizes[0]] + list(
+ zip(self.block_sizes, self.block_sizes[1:])
+ )
+ blocks = [
+ ResidualLayer(
+ in_channels=channels[0],
+ out_channels=channels[0],
+ num_blocks=self.depths[0],
+ block=block,
+ activation=self.activation,
+ *args,
+ **kwargs
+ )
+ ]
+ blocks += [
+ ResidualLayer(
+ in_channels=in_channels * block.expansion,
+ out_channels=out_channels,
+ num_blocks=num_blocks,
+ block=block,
+ activation=self.activation,
+ *args,
+ **kwargs
+ )
+ for (in_channels, out_channels), num_blocks in zip(
+ channels[1:], self.depths[1:]
+ )
+ ]
+
+ return nn.Sequential(*blocks)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass."""
+ # If batch dimenstion is missing, it needs to be added.
+ if len(x.shape) == 3:
+ x = x.unsqueeze(0)
+ x = self.gate(x)
+ x = self.blocks(x)
+ return x
+
+
+class ResidualNetworkDecoder(nn.Module):
+ """Classification head."""
+
+ def __init__(self, in_features: int, num_classes: int = 80) -> None:
+ super().__init__()
+ self.decoder = nn.Sequential(
+ Reduce("b c h w -> b c", "mean"),
+ nn.Linear(in_features=in_features, out_features=num_classes),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass."""
+ return self.decoder(x)
+
+
+class ResidualNetwork(nn.Module):
+ """Full residual network."""
+
+ def __init__(self, in_channels: int, num_classes: int, *args, **kwargs) -> None:
+ super().__init__()
+ self.encoder = ResidualNetworkEncoder(in_channels, *args, **kwargs)
+ self.decoder = ResidualNetworkDecoder(
+ in_features=self.encoder.blocks[-1].blocks[-1].expanded_channels,
+ num_classes=num_classes,
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass."""
+ x = self.encoder(x)
+ x = self.decoder(x)
+ return x
diff --git a/text_recognizer/networks/stn.py b/text_recognizer/networks/stn.py
new file mode 100644
index 0000000..e9d216f
--- /dev/null
+++ b/text_recognizer/networks/stn.py
@@ -0,0 +1,44 @@
+"""Spatial Transformer Network."""
+
+from einops.layers.torch import Rearrange
+import torch
+from torch import nn
+from torch import Tensor
+import torch.nn.functional as F
+
+
+class SpatialTransformerNetwork(nn.Module):
+ """A network with differentiable attention.
+
+ Network that learns how to perform spatial transformations on the input image in order to enhance the
+ geometric invariance of the model.
+
+ # TODO: add arguments to make it more general.
+
+ """
+
+ def __init__(self) -> None:
+ super().__init__()
+ # Initialize the identity transformation and its weights and biases.
+ linear = nn.Linear(32, 3 * 2)
+ linear.weight.data.zero_()
+ linear.bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
+
+ self.theta = nn.Sequential(
+ nn.Conv2d(in_channels=1, out_channels=8, kernel_size=7),
+ nn.MaxPool2d(kernel_size=2, stride=2),
+ nn.ReLU(inplace=True),
+ nn.Conv2d(in_channels=8, out_channels=10, kernel_size=5),
+ nn.MaxPool2d(kernel_size=2, stride=2),
+ nn.ReLU(inplace=True),
+ Rearrange("b c h w -> b (c h w)", h=3, w=3),
+ nn.Linear(in_features=10 * 3 * 3, out_features=32),
+ nn.ReLU(inplace=True),
+ linear,
+ Rearrange("b (row col) -> b row col", row=2, col=3),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """The spatial transformation."""
+ grid = F.affine_grid(self.theta(x), x.shape)
+ return F.grid_sample(x, grid, align_corners=False)
diff --git a/text_recognizer/networks/transducer/__init__.py b/text_recognizer/networks/transducer/__init__.py
new file mode 100644
index 0000000..8c19a01
--- /dev/null
+++ b/text_recognizer/networks/transducer/__init__.py
@@ -0,0 +1,3 @@
+"""Transducer modules."""
+from .tds_conv import TDS2d
+from .transducer import load_transducer_loss, Transducer
diff --git a/text_recognizer/networks/transducer/tds_conv.py b/text_recognizer/networks/transducer/tds_conv.py
new file mode 100644
index 0000000..5fb8ba9
--- /dev/null
+++ b/text_recognizer/networks/transducer/tds_conv.py
@@ -0,0 +1,208 @@
+"""Time-Depth Separable Convolutions.
+
+References:
+ https://arxiv.org/abs/1904.02619
+ https://arxiv.org/pdf/2010.01003.pdf
+
+Code stolen from:
+ https://github.com/facebookresearch/gtn_applications
+
+
+"""
+from typing import List, Tuple
+
+from einops import rearrange
+import gtn
+import numpy as np
+import torch
+from torch import nn
+from torch import Tensor
+
+
+class TDSBlock2d(nn.Module):
+ """Internal block of a 2D TDSC network."""
+
+ def __init__(
+ self,
+ in_channels: int,
+ img_depth: int,
+ kernel_size: Tuple[int],
+ dropout_rate: float,
+ ) -> None:
+ super().__init__()
+
+ self.in_channels = in_channels
+ self.img_depth = img_depth
+ self.kernel_size = kernel_size
+ self.dropout_rate = dropout_rate
+ self.fc_dim = in_channels * img_depth
+
+ # Network placeholders.
+ self.conv = None
+ self.mlp = None
+ self.instance_norm = None
+
+ self._build_block()
+
+ def _build_block(self) -> None:
+ # Convolutional block.
+ self.conv = nn.Sequential(
+ nn.Conv3d(
+ in_channels=self.in_channels,
+ out_channels=self.in_channels,
+ kernel_size=(1, self.kernel_size[0], self.kernel_size[1]),
+ padding=(0, self.kernel_size[0] // 2, self.kernel_size[1] // 2),
+ ),
+ nn.ReLU(inplace=True),
+ nn.Dropout(self.dropout_rate),
+ )
+
+ # MLP block.
+ self.mlp = nn.Sequential(
+ nn.Linear(self.fc_dim, self.fc_dim),
+ nn.ReLU(inplace=True),
+ nn.Dropout(self.dropout_rate),
+ nn.Linear(self.fc_dim, self.fc_dim),
+ nn.Dropout(self.dropout_rate),
+ )
+
+ # Instance norm.
+ self.instance_norm = nn.ModuleList(
+ [
+ nn.InstanceNorm2d(self.fc_dim, affine=True),
+ nn.InstanceNorm2d(self.fc_dim, affine=True),
+ ]
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass.
+
+ Args:
+ x (Tensor): Input tensor.
+
+ Shape:
+ - x: :math: `(B, CD, H, W)`
+
+ Returns:
+ Tensor: Output tensor.
+
+ """
+ B, CD, H, W = x.shape
+ C, D = self.in_channels, self.img_depth
+ residual = x
+ x = rearrange(x, "b (c d) h w -> b c d h w", c=C, d=D)
+ x = self.conv(x)
+ x = rearrange(x, "b c d h w -> b (c d) h w")
+ x += residual
+
+ x = self.instance_norm[0](x)
+
+ x = self.mlp(x.transpose(1, 3)).transpose(1, 3) + x
+ x + self.instance_norm[1](x)
+
+ # Output shape: [B, CD, H, W]
+ return x
+
+
+class TDS2d(nn.Module):
+ """TDS Netowrk.
+
+ Structure is the following:
+ Downsample layer -> TDS2d group -> ... -> Linear output layer
+
+
+ """
+
+ def __init__(
+ self,
+ input_dim: int,
+ output_dim: int,
+ depth: int,
+ tds_groups: Tuple[int],
+ kernel_size: Tuple[int],
+ dropout_rate: float,
+ in_channels: int = 1,
+ ) -> None:
+ super().__init__()
+
+ self.in_channels = in_channels
+ self.input_dim = input_dim
+ self.output_dim = output_dim
+ self.depth = depth
+ self.tds_groups = tds_groups
+ self.kernel_size = kernel_size
+ self.dropout_rate = dropout_rate
+
+ self.tds = None
+ self.fc = None
+
+ self._build_network()
+
+ def _build_network(self) -> None:
+ in_channels = self.in_channels
+ modules = []
+ stride_h = np.prod([grp["stride"][0] for grp in self.tds_groups])
+ if self.input_dim % stride_h:
+ raise RuntimeError(
+ f"Image height not divisible by total stride {stride_h}."
+ )
+
+ for tds_group in self.tds_groups:
+ # Add downsample layer.
+ out_channels = self.depth * tds_group["channels"]
+ modules.extend(
+ [
+ nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=self.kernel_size,
+ padding=(self.kernel_size[0] // 2, self.kernel_size[1] // 2),
+ stride=tds_group["stride"],
+ ),
+ nn.ReLU(inplace=True),
+ nn.Dropout(self.dropout_rate),
+ nn.InstanceNorm2d(out_channels, affine=True),
+ ]
+ )
+
+ for _ in range(tds_group["num_blocks"]):
+ modules.append(
+ TDSBlock2d(
+ tds_group["channels"],
+ self.depth,
+ self.kernel_size,
+ self.dropout_rate,
+ )
+ )
+
+ in_channels = out_channels
+
+ self.tds = nn.Sequential(*modules)
+ self.fc = nn.Linear(in_channels * self.input_dim // stride_h, self.output_dim)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass.
+
+ Args:
+ x (Tensor): Input tensor.
+
+ Shape:
+ - x: :math: `(B, H, W)`
+
+ Returns:
+ Tensor: Output tensor.
+
+ """
+ if len(x.shape) == 4:
+ x = x.squeeze(1) # Squeeze the channel dim away.
+
+ B, H, W = x.shape
+ x = rearrange(
+ x, "b (h1 h2) w -> b h1 h2 w", h1=self.in_channels, h2=H // self.in_channels
+ )
+ x = self.tds(x)
+
+ # x shape: [B, C, H, W]
+ x = rearrange(x, "b c h w -> b w (c h)")
+
+ return self.fc(x)
diff --git a/text_recognizer/networks/transducer/test.py b/text_recognizer/networks/transducer/test.py
new file mode 100644
index 0000000..cadcecc
--- /dev/null
+++ b/text_recognizer/networks/transducer/test.py
@@ -0,0 +1,60 @@
+import torch
+from torch import nn
+
+from text_recognizer.networks.transducer import load_transducer_loss, Transducer
+import unittest
+
+
+class TestTransducer(unittest.TestCase):
+ def test_viterbi(self):
+ T = 5
+ N = 4
+ B = 2
+
+ # fmt: off
+ emissions1 = torch.tensor((
+ 0, 4, 0, 1,
+ 0, 2, 1, 1,
+ 0, 0, 0, 2,
+ 0, 0, 0, 2,
+ 8, 0, 0, 2,
+ ),
+ dtype=torch.float,
+ ).view(T, N)
+ emissions2 = torch.tensor((
+ 0, 2, 1, 7,
+ 0, 2, 9, 1,
+ 0, 0, 0, 2,
+ 0, 0, 5, 2,
+ 1, 0, 0, 2,
+ ),
+ dtype=torch.float,
+ ).view(T, N)
+ # fmt: on
+
+ # Test without blank:
+ labels = [[1, 3, 0], [3, 2, 3, 2, 3]]
+ transducer = Transducer(
+ tokens=["a", "b", "c", "d"],
+ graphemes_to_idx={"a": 0, "b": 1, "c": 2, "d": 3},
+ blank="none",
+ )
+ emissions = torch.stack([emissions1, emissions2], dim=0)
+ predictions = transducer.viterbi(emissions)
+ self.assertEqual([p.tolist() for p in predictions], labels)
+
+ # Test with blank without repeats:
+ labels = [[1, 0], [2, 2]]
+ transducer = Transducer(
+ tokens=["a", "b", "c"],
+ graphemes_to_idx={"a": 0, "b": 1, "c": 2},
+ blank="optional",
+ allow_repeats=False,
+ )
+ emissions = torch.stack([emissions1, emissions2], dim=0)
+ predictions = transducer.viterbi(emissions)
+ self.assertEqual([p.tolist() for p in predictions], labels)
+
+
+if __name__ == "__main__":
+ unittest.main()
diff --git a/text_recognizer/networks/transducer/transducer.py b/text_recognizer/networks/transducer/transducer.py
new file mode 100644
index 0000000..d7e3d08
--- /dev/null
+++ b/text_recognizer/networks/transducer/transducer.py
@@ -0,0 +1,410 @@
+"""Transducer and the transducer loss function.py
+
+Stolen from:
+ https://github.com/facebookresearch/gtn_applications/blob/master/transducer.py
+
+"""
+from pathlib import Path
+import itertools
+from typing import Dict, List, Optional, Union, Tuple
+
+from loguru import logger
+import gtn
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.datasets.iam_preprocessor import Preprocessor
+
+
+def make_scalar_graph(weight) -> gtn.Graph:
+ scalar = gtn.Graph()
+ scalar.add_node(True)
+ scalar.add_node(False, True)
+ scalar.add_arc(0, 1, 0, 0, weight)
+ return scalar
+
+
+def make_chain_graph(sequence) -> gtn.Graph:
+ graph = gtn.Graph(False)
+ graph.add_node(True)
+ for i, s in enumerate(sequence):
+ graph.add_node(False, i == (len(sequence) - 1))
+ graph.add_arc(i, i + 1, s)
+ return graph
+
+
+def make_transitions_graph(
+ ngram: int, num_tokens: int, calc_grad: bool = False
+) -> gtn.Graph:
+ transitions = gtn.Graph(calc_grad)
+ transitions.add_node(True, ngram == 1)
+
+ state_map = {(): 0}
+
+ # First build transitions which include <s>:
+ for n in range(1, ngram):
+ for state in itertools.product(range(num_tokens), repeat=n):
+ in_idx = state_map[state[:-1]]
+ out_idx = transitions.add_node(False, ngram == 1)
+ state_map[state] = out_idx
+ transitions.add_arc(in_idx, out_idx, state[-1])
+
+ for state in itertools.product(range(num_tokens), repeat=ngram):
+ state_idx = state_map[state[:-1]]
+ new_state_idx = state_map[state[1:]]
+ # p(state[-1] | state[:-1])
+ transitions.add_arc(state_idx, new_state_idx, state[-1])
+
+ if ngram > 1:
+ # Build transitions which include </s>:
+ end_idx = transitions.add_node(False, True)
+ for in_idx in range(end_idx):
+ transitions.add_arc(in_idx, end_idx, gtn.epsilon)
+
+ return transitions
+
+
+def make_lexicon_graph(word_pieces: List, graphemes_to_idx: Dict) -> gtn.Graph:
+ """Constructs a graph which transduces letters to word pieces."""
+ graph = gtn.Graph(False)
+ graph.add_node(True, True)
+ for i, wp in enumerate(word_pieces):
+ prev = 0
+ for l in wp[:-1]:
+ n = graph.add_node()
+ graph.add_arc(prev, n, graphemes_to_idx[l], gtn.epsilon)
+ prev = n
+ graph.add_arc(prev, 0, graphemes_to_idx[wp[-1]], i)
+ graph.arc_sort()
+ return graph
+
+
+def make_token_graph(
+ token_list: List, blank: str = "none", allow_repeats: bool = True
+) -> gtn.Graph:
+ """Constructs a graph with all the individual token transition models."""
+ if not allow_repeats and blank != "optional":
+ raise ValueError("Must use blank='optional' if disallowing repeats.")
+
+ ntoks = len(token_list)
+ graph = gtn.Graph(False)
+
+ # Creating nodes
+ graph.add_node(True, True)
+ for i in range(ntoks):
+ # We can consume one or more consecutive word
+ # pieces for each emission:
+ # E.g. [ab, ab, ab] transduces to [ab]
+ graph.add_node(False, blank != "forced")
+
+ if blank != "none":
+ graph.add_node()
+
+ # Creating arcs
+ if blank != "none":
+ # Blank index is assumed to be last (ntoks)
+ graph.add_arc(0, ntoks + 1, ntoks, gtn.epsilon)
+ graph.add_arc(ntoks + 1, 0, gtn.epsilon)
+
+ for i in range(ntoks):
+ graph.add_arc((ntoks + 1) if blank == "forced" else 0, i + 1, i)
+ graph.add_arc(i + 1, i + 1, i, gtn.epsilon)
+
+ if allow_repeats:
+ if blank == "forced":
+ # Allow transitions from token to blank only
+ graph.add_arc(i + 1, ntoks + 1, ntoks, gtn.epsilon)
+ else:
+ # Allow transition from token to blank and all other tokens
+ graph.add_arc(i + 1, 0, gtn.epsilon)
+
+ else:
+ # allow transitions to blank and all other tokens except the same token
+ graph.add_arc(i + 1, ntoks + 1, ntoks, gtn.epsilon)
+ for j in range(ntoks):
+ if i != j:
+ graph.add_arc(i + 1, j + 1, j, j)
+
+ return graph
+
+
+class TransducerLossFunction(torch.autograd.Function):
+ @staticmethod
+ def forward(
+ ctx,
+ inputs,
+ targets,
+ tokens,
+ lexicon,
+ transition_params=None,
+ transitions=None,
+ reduction="none",
+ ) -> Tensor:
+ B, T, C = inputs.shape
+
+ losses = [None] * B
+ emissions_graphs = [None] * B
+
+ if transitions is not None:
+ if transition_params is None:
+ raise ValueError("Specified transitions, but not transition params.")
+
+ cpu_data = transition_params.cpu().contiguous()
+ transitions.set_weights(cpu_data.data_ptr())
+ transitions.calc_grad = transition_params.requires_grad
+ transitions.zero_grad()
+
+ def process(b: int) -> None:
+ # Create emission graph:
+ emissions = gtn.linear_graph(T, C, inputs.requires_grad)
+ cpu_data = inputs[b].cpu().contiguous()
+ emissions.set_weights(cpu_data.data_ptr())
+ target = make_chain_graph(targets[b])
+ target.arc_sort(True)
+
+ # Create token tot grapheme decomposition graph
+ tokens_target = gtn.remove(gtn.project_output(gtn.compose(target, lexicon)))
+ tokens_target.arc_sort()
+
+ # Create alignment graph:
+ aligments = gtn.project_input(
+ gtn.remove(gtn.compose(tokens, tokens_target))
+ )
+ aligments.arc_sort()
+
+ # Add transitions scores:
+ if transitions is not None:
+ aligments = gtn.intersect(transitions, aligments)
+ aligments.arc_sort()
+
+ loss = gtn.forward_score(gtn.intersect(emissions, aligments))
+
+ # Normalize if needed:
+ if transitions is not None:
+ norm = gtn.forward_score(gtn.intersect(emissions, transitions))
+ loss = gtn.subtract(loss, norm)
+
+ losses[b] = gtn.negate(loss)
+
+ # Save for backward:
+ if emissions.calc_grad:
+ emissions_graphs[b] = emissions
+
+ gtn.parallel_for(process, range(B))
+
+ ctx.graphs = (losses, emissions_graphs, transitions)
+ ctx.input_shape = inputs.shape
+
+ # Optionally reduce by target length
+ if reduction == "mean":
+ scales = [(1 / len(t) if len(t) > 0 else 1.0) for t in targets]
+ else:
+ scales = [1.0] * B
+
+ ctx.scales = scales
+
+ loss = torch.tensor([l.item() * s for l, s in zip(losses, scales)])
+ return torch.mean(loss.to(inputs.device))
+
+ @staticmethod
+ def backward(ctx, grad_output) -> Tuple:
+ losses, emissions_graphs, transitions = ctx.graphs
+ scales = ctx.scales
+
+ B, T, C = ctx.input_shape
+ calc_emissions = ctx.needs_input_grad[0]
+ input_grad = torch.empty((B, T, C)) if calc_emissions else None
+
+ def process(b: int) -> None:
+ scale = make_scalar_graph(scales[b])
+ gtn.backward(losses[b], scale)
+ emissions = emissions_graphs[b]
+ if calc_emissions:
+ grad = emissions.grad().weights_to_numpy()
+ input_grad[b] = torch.tensor(grad).view(1, T, C)
+
+ gtn.parallel_for(process, range(B))
+
+ if calc_emissions:
+ input_grad = input_grad.to(grad_output.device)
+ input_grad *= grad_output / B
+
+ if ctx.needs_input_grad[4]:
+ grad = transitions.grad().weights_to_numpy()
+ transition_grad = torch.tensor(grad).to(grad_output.device)
+ transition_grad *= grad_output / B
+ else:
+ transition_grad = None
+
+ return (
+ input_grad,
+ None, # target
+ None, # tokens
+ None, # lexicon
+ transition_grad, # transition params
+ None, # transitions graph
+ None,
+ )
+
+
+TransducerLoss = TransducerLossFunction.apply
+
+
+class Transducer(nn.Module):
+ def __init__(
+ self,
+ tokens: List,
+ graphemes_to_idx: Dict,
+ ngram: int = 0,
+ transitions: str = None,
+ blank: str = "none",
+ allow_repeats: bool = True,
+ reduction: str = "none",
+ ) -> None:
+ """A generic transducer loss function.
+
+ Args:
+ tokens (List) : A list of iterable objects (e.g. strings, tuples, etc)
+ representing the output tokens of the model (e.g. letters,
+ word-pieces, words). For example ["a", "b", "ab", "ba", "aba"]
+ could be a list of sub-word tokens.
+ graphemes_to_idx (dict) : A dictionary mapping grapheme units (e.g.
+ "a", "b", ..) to their corresponding integer index.
+ ngram (int) : Order of the token-level transition model. If `ngram=0`
+ then no transition model is used.
+ blank (string) : Specifies the usage of blank token
+ 'none' - do not use blank token
+ 'optional' - allow an optional blank inbetween tokens
+ 'forced' - force a blank inbetween tokens (also referred to as garbage token)
+ allow_repeats (boolean) : If false, then we don't allow paths with
+ consecutive tokens in the alignment graph. This keeps the graph
+ unambiguous in the sense that the same input cannot transduce to
+ different outputs.
+ """
+ super().__init__()
+ if blank not in ["optional", "forced", "none"]:
+ raise ValueError(
+ "Invalid value specified for blank. Must be in ['optional', 'forced', 'none']"
+ )
+ self.tokens = make_token_graph(tokens, blank=blank, allow_repeats=allow_repeats)
+ self.lexicon = make_lexicon_graph(tokens, graphemes_to_idx)
+ self.ngram = ngram
+ if ngram > 0 and transitions is not None:
+ raise ValueError("Only one of ngram and transitions may be specified")
+
+ if ngram > 0:
+ transitions = make_transitions_graph(
+ ngram, len(tokens) + int(blank != "none"), True
+ )
+
+ if transitions is not None:
+ self.transitions = transitions
+ self.transitions.arc_sort()
+ self.transitions_params = nn.Parameter(
+ torch.zeros(self.transitions.num_arcs())
+ )
+ else:
+ self.transitions = None
+ self.transitions_params = None
+ self.reduction = reduction
+
+ def forward(self, inputs: Tensor, targets: Tensor) -> TransducerLoss:
+ TransducerLoss(
+ inputs,
+ targets,
+ self.tokens,
+ self.lexicon,
+ self.transitions_params,
+ self.transitions,
+ self.reduction,
+ )
+
+ def viterbi(self, outputs: Tensor) -> List[Tensor]:
+ B, T, C = outputs.shape
+
+ if self.transitions is not None:
+ cpu_data = self.transition_params.cpu().contiguous()
+ self.transitions.set_weights(cpu_data.data_ptr())
+ self.transitions.calc_grad = False
+
+ self.tokens.arc_sort()
+
+ paths = [None] * B
+
+ def process(b: int) -> None:
+ emissions = gtn.linear_graph(T, C, False)
+ cpu_data = outputs[b].cpu().contiguous()
+ emissions.set_weights(cpu_data.data_ptr())
+
+ if self.transitions is not None:
+ full_graph = gtn.intersect(emissions, self.transitions)
+ else:
+ full_graph = emissions
+
+ # Find the best path and remove back-off arcs:
+ path = gtn.remove(gtn.viterbi_path(full_graph))
+
+ # Left compose the viterbi path with the "aligment to token"
+ # transducer to get the outputs:
+ path = gtn.compose(path, self.tokens)
+
+ # When there are ambiguous paths (allow_repeats is true), we take
+ # the shortest:
+ path = gtn.viterbi_path(path)
+ path = gtn.remove(gtn.project_output(path))
+ paths[b] = path.labels_to_list()
+
+ gtn.parallel_for(process, range(B))
+ predictions = [torch.IntTensor(path) for path in paths]
+ return predictions
+
+
+def load_transducer_loss(
+ num_features: int,
+ ngram: int,
+ tokens: str,
+ lexicon: str,
+ transitions: str,
+ blank: str,
+ allow_repeats: bool,
+ prepend_wordsep: bool = False,
+ use_words: bool = False,
+ data_dir: Optional[Union[str, Path]] = None,
+ reduction: str = "mean",
+) -> Tuple[Transducer, int]:
+ if data_dir is None:
+ data_dir = (
+ Path(__file__).resolve().parents[4] / "data" / "raw" / "iam" / "iamdb"
+ )
+ logger.debug(f"Using data dir: {data_dir}")
+ if not data_dir.exists():
+ raise RuntimeError(f"Could not locate iamdb directory at {data_dir}")
+ else:
+ data_dir = Path(data_dir)
+ processed_path = (
+ Path(__file__).resolve().parents[4] / "data" / "processed" / "iam_lines"
+ )
+ tokens_path = processed_path / tokens
+ lexicon_path = processed_path / lexicon
+
+ if transitions is not None:
+ transitions = gtn.load(str(processed_path / transitions))
+
+ preprocessor = Preprocessor(
+ data_dir, num_features, tokens_path, lexicon_path, use_words, prepend_wordsep,
+ )
+
+ num_tokens = preprocessor.num_tokens
+
+ criterion = Transducer(
+ preprocessor.tokens,
+ preprocessor.graphemes_to_index,
+ ngram=ngram,
+ transitions=transitions,
+ blank=blank,
+ allow_repeats=allow_repeats,
+ reduction=reduction,
+ )
+
+ return criterion, num_tokens + int(blank != "none")
diff --git a/text_recognizer/networks/transformer/__init__.py b/text_recognizer/networks/transformer/__init__.py
new file mode 100644
index 0000000..9febc88
--- /dev/null
+++ b/text_recognizer/networks/transformer/__init__.py
@@ -0,0 +1,3 @@
+"""Transformer modules."""
+from .positional_encoding import PositionalEncoding
+from .transformer import Decoder, Encoder, EncoderLayer, Transformer
diff --git a/text_recognizer/networks/transformer/attention.py b/text_recognizer/networks/transformer/attention.py
new file mode 100644
index 0000000..cce1ecc
--- /dev/null
+++ b/text_recognizer/networks/transformer/attention.py
@@ -0,0 +1,93 @@
+"""Implementes the attention module for the transformer."""
+from typing import Optional, Tuple
+
+from einops import rearrange
+import numpy as np
+import torch
+from torch import nn
+from torch import Tensor
+
+
+class MultiHeadAttention(nn.Module):
+ """Implementation of multihead attention."""
+
+ def __init__(
+ self, hidden_dim: int, num_heads: int = 8, dropout_rate: float = 0.0
+ ) -> None:
+ super().__init__()
+ self.hidden_dim = hidden_dim
+ self.num_heads = num_heads
+ self.fc_q = nn.Linear(
+ in_features=hidden_dim, out_features=hidden_dim, bias=False
+ )
+ self.fc_k = nn.Linear(
+ in_features=hidden_dim, out_features=hidden_dim, bias=False
+ )
+ self.fc_v = nn.Linear(
+ in_features=hidden_dim, out_features=hidden_dim, bias=False
+ )
+ self.fc_out = nn.Linear(in_features=hidden_dim, out_features=hidden_dim)
+
+ self._init_weights()
+
+ self.dropout = nn.Dropout(p=dropout_rate)
+
+ def _init_weights(self) -> None:
+ nn.init.normal_(
+ self.fc_q.weight,
+ mean=0,
+ std=np.sqrt(self.hidden_dim + int(self.hidden_dim / self.num_heads)),
+ )
+ nn.init.normal_(
+ self.fc_k.weight,
+ mean=0,
+ std=np.sqrt(self.hidden_dim + int(self.hidden_dim / self.num_heads)),
+ )
+ nn.init.normal_(
+ self.fc_v.weight,
+ mean=0,
+ std=np.sqrt(self.hidden_dim + int(self.hidden_dim / self.num_heads)),
+ )
+ nn.init.xavier_normal_(self.fc_out.weight)
+
+ def scaled_dot_product_attention(
+ self, query: Tensor, key: Tensor, value: Tensor, mask: Optional[Tensor] = None
+ ) -> Tensor:
+ """Calculates the scaled dot product attention."""
+
+ # Compute the energy.
+ energy = torch.einsum("bhlk,bhtk->bhlt", [query, key]) / np.sqrt(
+ query.shape[-1]
+ )
+
+ # If we have a mask for padding some inputs.
+ if mask is not None:
+ energy = energy.masked_fill(mask == 0, -np.inf)
+
+ # Compute the attention from the energy.
+ attention = torch.softmax(energy, dim=3)
+
+ out = torch.einsum("bhlt,bhtv->bhlv", [attention, value])
+ out = rearrange(out, "b head l v -> b l (head v)")
+ return out, attention
+
+ def forward(
+ self, query: Tensor, key: Tensor, value: Tensor, mask: Optional[Tensor] = None
+ ) -> Tuple[Tensor, Tensor]:
+ """Forward pass for computing the multihead attention."""
+ # Get the query, key, and value tensor.
+ query = rearrange(
+ self.fc_q(query), "b l (head k) -> b head l k", head=self.num_heads
+ )
+ key = rearrange(
+ self.fc_k(key), "b t (head k) -> b head t k", head=self.num_heads
+ )
+ value = rearrange(
+ self.fc_v(value), "b t (head v) -> b head t v", head=self.num_heads
+ )
+
+ out, attention = self.scaled_dot_product_attention(query, key, value, mask)
+
+ out = self.fc_out(out)
+ out = self.dropout(out)
+ return out, attention
diff --git a/text_recognizer/networks/transformer/positional_encoding.py b/text_recognizer/networks/transformer/positional_encoding.py
new file mode 100644
index 0000000..1ba5537
--- /dev/null
+++ b/text_recognizer/networks/transformer/positional_encoding.py
@@ -0,0 +1,32 @@
+"""A positional encoding for the image features, as the transformer has no notation of the order of the sequence."""
+import numpy as np
+import torch
+from torch import nn
+from torch import Tensor
+
+
+class PositionalEncoding(nn.Module):
+ """Encodes a sense of distance or time for transformer networks."""
+
+ def __init__(
+ self, hidden_dim: int, dropout_rate: float, max_len: int = 1000
+ ) -> None:
+ super().__init__()
+ self.dropout = nn.Dropout(p=dropout_rate)
+ self.max_len = max_len
+
+ pe = torch.zeros(max_len, hidden_dim)
+ position = torch.arange(0, max_len).unsqueeze(1)
+ div_term = torch.exp(
+ torch.arange(0, hidden_dim, 2) * -(np.log(10000.0) / hidden_dim)
+ )
+
+ pe[:, 0::2] = torch.sin(position * div_term)
+ pe[:, 1::2] = torch.cos(position * div_term)
+ pe = pe.unsqueeze(0)
+ self.register_buffer("pe", pe)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Encodes the tensor with a postional embedding."""
+ x = x + self.pe[:, : x.shape[1]]
+ return self.dropout(x)
diff --git a/text_recognizer/networks/transformer/transformer.py b/text_recognizer/networks/transformer/transformer.py
new file mode 100644
index 0000000..dd180c4
--- /dev/null
+++ b/text_recognizer/networks/transformer/transformer.py
@@ -0,0 +1,264 @@
+"""Transfomer module."""
+import copy
+from typing import Dict, Optional, Type, Union
+
+import numpy as np
+import torch
+from torch import nn
+from torch import Tensor
+import torch.nn.functional as F
+
+from text_recognizer.networks.transformer.attention import MultiHeadAttention
+from text_recognizer.networks.util import activation_function
+
+
+class GEGLU(nn.Module):
+ """GLU activation for improving feedforward activations."""
+
+ def __init__(self, dim_in: int, dim_out: int) -> None:
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward propagation."""
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+def _get_clones(module: Type[nn.Module], num_layers: int) -> nn.ModuleList:
+ return nn.ModuleList([copy.deepcopy(module) for _ in range(num_layers)])
+
+
+class _IntraLayerConnection(nn.Module):
+ """Preforms the residual connection inside the transfomer blocks and applies layernorm."""
+
+ def __init__(self, dropout_rate: float, hidden_dim: int) -> None:
+ super().__init__()
+ self.norm = nn.LayerNorm(normalized_shape=hidden_dim)
+ self.dropout = nn.Dropout(p=dropout_rate)
+
+ def forward(self, src: Tensor, residual: Tensor) -> Tensor:
+ return self.norm(self.dropout(src) + residual)
+
+
+class _ConvolutionalLayer(nn.Module):
+ def __init__(
+ self,
+ hidden_dim: int,
+ expansion_dim: int,
+ dropout_rate: float,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+
+ in_projection = (
+ nn.Sequential(
+ nn.Linear(hidden_dim, expansion_dim), activation_function(activation)
+ )
+ if activation != "glu"
+ else GEGLU(hidden_dim, expansion_dim)
+ )
+
+ self.layer = nn.Sequential(
+ in_projection,
+ nn.Dropout(p=dropout_rate),
+ nn.Linear(in_features=expansion_dim, out_features=hidden_dim),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ return self.layer(x)
+
+
+class EncoderLayer(nn.Module):
+ """Transfomer encoding layer."""
+
+ def __init__(
+ self,
+ hidden_dim: int,
+ num_heads: int,
+ expansion_dim: int,
+ dropout_rate: float,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+ self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate)
+ self.cnn = _ConvolutionalLayer(
+ hidden_dim, expansion_dim, dropout_rate, activation
+ )
+ self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim)
+ self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim)
+
+ def forward(self, src: Tensor, mask: Optional[Tensor] = None) -> Tensor:
+ """Forward pass through the encoder."""
+ # First block.
+ # Multi head attention.
+ out, _ = self.self_attention(src, src, src, mask)
+
+ # Add & norm.
+ out = self.block1(out, src)
+
+ # Second block.
+ # Apply 1D-convolution.
+ cnn_out = self.cnn(out)
+
+ # Add & norm.
+ out = self.block2(cnn_out, out)
+
+ return out
+
+
+class Encoder(nn.Module):
+ """Transfomer encoder module."""
+
+ def __init__(
+ self,
+ num_layers: int,
+ encoder_layer: Type[nn.Module],
+ norm: Optional[Type[nn.Module]] = None,
+ ) -> None:
+ super().__init__()
+ self.layers = _get_clones(encoder_layer, num_layers)
+ self.norm = norm
+
+ def forward(self, src: Tensor, src_mask: Optional[Tensor] = None) -> Tensor:
+ """Forward pass through all encoder layers."""
+ for layer in self.layers:
+ src = layer(src, src_mask)
+
+ if self.norm is not None:
+ src = self.norm(src)
+
+ return src
+
+
+class DecoderLayer(nn.Module):
+ """Transfomer decoder layer."""
+
+ def __init__(
+ self,
+ hidden_dim: int,
+ num_heads: int,
+ expansion_dim: int,
+ dropout_rate: float = 0.0,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+ self.hidden_dim = hidden_dim
+ self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate)
+ self.multihead_attention = MultiHeadAttention(
+ hidden_dim, num_heads, dropout_rate
+ )
+ self.cnn = _ConvolutionalLayer(
+ hidden_dim, expansion_dim, dropout_rate, activation
+ )
+ self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim)
+ self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim)
+ self.block3 = _IntraLayerConnection(dropout_rate, hidden_dim)
+
+ def forward(
+ self,
+ trg: Tensor,
+ memory: Tensor,
+ trg_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ """Forward pass of the layer."""
+ out, _ = self.self_attention(trg, trg, trg, trg_mask)
+ trg = self.block1(out, trg)
+
+ out, _ = self.multihead_attention(trg, memory, memory, memory_mask)
+ trg = self.block2(out, trg)
+
+ out = self.cnn(trg)
+ out = self.block3(out, trg)
+
+ return out
+
+
+class Decoder(nn.Module):
+ """Transfomer decoder module."""
+
+ def __init__(
+ self,
+ decoder_layer: Type[nn.Module],
+ num_layers: int,
+ norm: Optional[Type[nn.Module]] = None,
+ ) -> None:
+ super().__init__()
+ self.layers = _get_clones(decoder_layer, num_layers)
+ self.num_layers = num_layers
+ self.norm = norm
+
+ def forward(
+ self,
+ trg: Tensor,
+ memory: Tensor,
+ trg_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ """Forward pass through the decoder."""
+ for layer in self.layers:
+ trg = layer(trg, memory, trg_mask, memory_mask)
+
+ if self.norm is not None:
+ trg = self.norm(trg)
+
+ return trg
+
+
+class Transformer(nn.Module):
+ """Transformer network."""
+
+ def __init__(
+ self,
+ num_encoder_layers: int,
+ num_decoder_layers: int,
+ hidden_dim: int,
+ num_heads: int,
+ expansion_dim: int,
+ dropout_rate: float,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+
+ # Configure encoder.
+ encoder_norm = nn.LayerNorm(hidden_dim)
+ encoder_layer = EncoderLayer(
+ hidden_dim, num_heads, expansion_dim, dropout_rate, activation
+ )
+ self.encoder = Encoder(num_encoder_layers, encoder_layer, encoder_norm)
+
+ # Configure decoder.
+ decoder_norm = nn.LayerNorm(hidden_dim)
+ decoder_layer = DecoderLayer(
+ hidden_dim, num_heads, expansion_dim, dropout_rate, activation
+ )
+ self.decoder = Decoder(decoder_layer, num_decoder_layers, decoder_norm)
+
+ self._reset_parameters()
+
+ def _reset_parameters(self) -> None:
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+
+ def forward(
+ self,
+ src: Tensor,
+ trg: Tensor,
+ src_mask: Optional[Tensor] = None,
+ trg_mask: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ """Forward pass through the transformer."""
+ if src.shape[0] != trg.shape[0]:
+ print(trg.shape)
+ raise RuntimeError("The batch size of the src and trg must be the same.")
+ if src.shape[2] != trg.shape[2]:
+ raise RuntimeError(
+ "The number of features for the src and trg must be the same."
+ )
+
+ memory = self.encoder(src, src_mask)
+ output = self.decoder(trg, memory, trg_mask, memory_mask)
+ return output
diff --git a/text_recognizer/networks/unet.py b/text_recognizer/networks/unet.py
new file mode 100644
index 0000000..510910f
--- /dev/null
+++ b/text_recognizer/networks/unet.py
@@ -0,0 +1,255 @@
+"""UNet for segmentation."""
+from typing import List, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import activation_function
+
+
+class _ConvBlock(nn.Module):
+ """Modified UNet convolutional block with dilation."""
+
+ def __init__(
+ self,
+ channels: List[int],
+ activation: str,
+ num_groups: int,
+ dropout_rate: float = 0.1,
+ kernel_size: int = 3,
+ dilation: int = 1,
+ padding: int = 0,
+ ) -> None:
+ super().__init__()
+ self.channels = channels
+ self.dropout_rate = dropout_rate
+ self.kernel_size = kernel_size
+ self.dilation = dilation
+ self.padding = padding
+ self.num_groups = num_groups
+ self.activation = activation_function(activation)
+ self.block = self._configure_block()
+ self.residual_conv = nn.Sequential(
+ nn.Conv2d(
+ self.channels[0], self.channels[-1], kernel_size=3, stride=1, padding=1
+ ),
+ self.activation,
+ )
+
+ def _configure_block(self) -> nn.Sequential:
+ block = []
+ for i in range(len(self.channels) - 1):
+ block += [
+ nn.Dropout(p=self.dropout_rate),
+ nn.GroupNorm(self.num_groups, self.channels[i]),
+ self.activation,
+ nn.Conv2d(
+ self.channels[i],
+ self.channels[i + 1],
+ kernel_size=self.kernel_size,
+ padding=self.padding,
+ stride=1,
+ dilation=self.dilation,
+ ),
+ ]
+
+ return nn.Sequential(*block)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Apply the convolutional block."""
+ residual = self.residual_conv(x)
+ return self.block(x) + residual
+
+
+class _DownSamplingBlock(nn.Module):
+ """Basic down sampling block."""
+
+ def __init__(
+ self,
+ channels: List[int],
+ activation: str,
+ num_groups: int,
+ pooling_kernel: Union[int, bool] = 2,
+ dropout_rate: float = 0.1,
+ kernel_size: int = 3,
+ dilation: int = 1,
+ padding: int = 0,
+ ) -> None:
+ super().__init__()
+ self.conv_block = _ConvBlock(
+ channels,
+ activation,
+ num_groups,
+ dropout_rate,
+ kernel_size,
+ dilation,
+ padding,
+ )
+ self.down_sampling = nn.MaxPool2d(pooling_kernel) if pooling_kernel else None
+
+ def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
+ """Return the convolutional block output and a down sampled tensor."""
+ x = self.conv_block(x)
+ x_down = self.down_sampling(x) if self.down_sampling is not None else x
+
+ return x_down, x
+
+
+class _UpSamplingBlock(nn.Module):
+ """The upsampling block of the UNet."""
+
+ def __init__(
+ self,
+ channels: List[int],
+ activation: str,
+ num_groups: int,
+ scale_factor: int = 2,
+ dropout_rate: float = 0.1,
+ kernel_size: int = 3,
+ dilation: int = 1,
+ padding: int = 0,
+ ) -> None:
+ super().__init__()
+ self.conv_block = _ConvBlock(
+ channels,
+ activation,
+ num_groups,
+ dropout_rate,
+ kernel_size,
+ dilation,
+ padding,
+ )
+ self.up_sampling = nn.Upsample(
+ scale_factor=scale_factor, mode="bilinear", align_corners=True
+ )
+
+ def forward(self, x: Tensor, x_skip: Optional[Tensor] = None) -> Tensor:
+ """Apply the up sampling and convolutional block."""
+ x = self.up_sampling(x)
+ if x_skip is not None:
+ x = torch.cat((x, x_skip), dim=1)
+ return self.conv_block(x)
+
+
+class UNet(nn.Module):
+ """UNet architecture."""
+
+ def __init__(
+ self,
+ in_channels: int = 1,
+ base_channels: int = 64,
+ num_classes: int = 3,
+ depth: int = 4,
+ activation: str = "relu",
+ num_groups: int = 8,
+ dropout_rate: float = 0.1,
+ pooling_kernel: int = 2,
+ scale_factor: int = 2,
+ kernel_size: Optional[List[int]] = None,
+ dilation: Optional[List[int]] = None,
+ padding: Optional[List[int]] = None,
+ ) -> None:
+ super().__init__()
+ self.depth = depth
+ self.num_groups = num_groups
+
+ if kernel_size is not None and dilation is not None and padding is not None:
+ if (
+ len(kernel_size) != depth
+ and len(dilation) != depth
+ and len(padding) != depth
+ ):
+ raise RuntimeError(
+ "Length of convolutional parameters does not match the depth."
+ )
+ self.kernel_size = kernel_size
+ self.padding = padding
+ self.dilation = dilation
+
+ else:
+ self.kernel_size = [3] * depth
+ self.padding = [1] * depth
+ self.dilation = [1] * depth
+
+ self.dropout_rate = dropout_rate
+ self.conv = nn.Conv2d(
+ in_channels, base_channels, kernel_size=3, stride=1, padding=1
+ )
+
+ channels = [base_channels] + [base_channels * 2 ** i for i in range(depth)]
+ self.encoder_blocks = self._configure_down_sampling_blocks(
+ channels, activation, pooling_kernel
+ )
+ self.decoder_blocks = self._configure_up_sampling_blocks(
+ channels, activation, scale_factor
+ )
+
+ self.head = nn.Conv2d(base_channels, num_classes, kernel_size=1)
+
+ def _configure_down_sampling_blocks(
+ self, channels: List[int], activation: str, pooling_kernel: int
+ ) -> nn.ModuleList:
+ blocks = nn.ModuleList([])
+ for i in range(len(channels) - 1):
+ pooling_kernel = pooling_kernel if i < self.depth - 1 else False
+ dropout_rate = self.dropout_rate if i < 0 else 0
+ blocks += [
+ _DownSamplingBlock(
+ [channels[i], channels[i + 1], channels[i + 1]],
+ activation,
+ self.num_groups,
+ pooling_kernel,
+ dropout_rate,
+ self.kernel_size[i],
+ self.dilation[i],
+ self.padding[i],
+ )
+ ]
+
+ return blocks
+
+ def _configure_up_sampling_blocks(
+ self, channels: List[int], activation: str, scale_factor: int,
+ ) -> nn.ModuleList:
+ channels.reverse()
+ self.kernel_size.reverse()
+ self.dilation.reverse()
+ self.padding.reverse()
+ return nn.ModuleList(
+ [
+ _UpSamplingBlock(
+ [channels[i] + channels[i + 1], channels[i + 1], channels[i + 1]],
+ activation,
+ self.num_groups,
+ scale_factor,
+ self.dropout_rate,
+ self.kernel_size[i],
+ self.dilation[i],
+ self.padding[i],
+ )
+ for i in range(len(channels) - 2)
+ ]
+ )
+
+ def _encode(self, x: Tensor) -> List[Tensor]:
+ x_skips = []
+ for block in self.encoder_blocks:
+ x, x_skip = block(x)
+ x_skips.append(x_skip)
+ return x_skips
+
+ def _decode(self, x_skips: List[Tensor]) -> Tensor:
+ x = x_skips[-1]
+ for i, block in enumerate(self.decoder_blocks):
+ x = block(x, x_skips[-(i + 2)])
+ return x
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass with the UNet model."""
+ if len(x.shape) < 4:
+ x = x[(None,) * (4 - len(x.shape))]
+ x = self.conv(x)
+ x_skips = self._encode(x)
+ x = self._decode(x_skips)
+ return self.head(x)
diff --git a/text_recognizer/networks/util.py b/text_recognizer/networks/util.py
new file mode 100644
index 0000000..131a6b4
--- /dev/null
+++ b/text_recognizer/networks/util.py
@@ -0,0 +1,89 @@
+"""Miscellaneous neural network functionality."""
+import importlib
+from pathlib import Path
+from typing import Dict, Tuple, Type
+
+from einops import rearrange
+from loguru import logger
+import torch
+from torch import nn
+
+
+def sliding_window(
+ images: torch.Tensor, patch_size: Tuple[int, int], stride: Tuple[int, int]
+) -> torch.Tensor:
+ """Creates patches of an image.
+
+ Args:
+ images (torch.Tensor): A Torch tensor of a 4D image(s), i.e. (batch, channel, height, width).
+ patch_size (Tuple[int, int]): The size of the patches to generate, e.g. 28x28 for EMNIST.
+ stride (Tuple[int, int]): The stride of the sliding window.
+
+ Returns:
+ torch.Tensor: A tensor with the shape (batch, patches, height, width).
+
+ """
+ unfold = nn.Unfold(kernel_size=patch_size, stride=stride)
+ # Preform the sliding window, unsqueeze as the channel dimesion is lost.
+ c = images.shape[1]
+ patches = unfold(images)
+ patches = rearrange(
+ patches, "b (c h w) t -> b t c h w", c=c, h=patch_size[0], w=patch_size[1],
+ )
+ return patches
+
+
+def activation_function(activation: str) -> Type[nn.Module]:
+ """Returns the callable activation function."""
+ activation_fns = nn.ModuleDict(
+ [
+ ["elu", nn.ELU(inplace=True)],
+ ["gelu", nn.GELU()],
+ ["glu", nn.GLU()],
+ ["leaky_relu", nn.LeakyReLU(negative_slope=1.0e-2, inplace=True)],
+ ["none", nn.Identity()],
+ ["relu", nn.ReLU(inplace=True)],
+ ["selu", nn.SELU(inplace=True)],
+ ]
+ )
+ return activation_fns[activation.lower()]
+
+
+def configure_backbone(backbone: str, backbone_args: Dict) -> Type[nn.Module]:
+ """Loads a backbone network."""
+ network_module = importlib.import_module("text_recognizer.networks")
+ backbone_ = getattr(network_module, backbone)
+
+ if "pretrained" in backbone_args:
+ logger.info("Loading pretrained backbone.")
+ checkpoint_file = Path(__file__).resolve().parents[2] / backbone_args.pop(
+ "pretrained"
+ )
+
+ # Loading state directory.
+ state_dict = torch.load(checkpoint_file)
+ network_args = state_dict["network_args"]
+ weights = state_dict["model_state"]
+
+ freeze = False
+ if "freeze" in backbone_args and backbone_args["freeze"] is True:
+ backbone_args.pop("freeze")
+ freeze = True
+ network_args = backbone_args
+
+ # Initializes the network with trained weights.
+ backbone = backbone_(**network_args)
+ backbone.load_state_dict(weights)
+ if freeze:
+ for params in backbone.parameters():
+ params.requires_grad = False
+ else:
+ backbone_ = getattr(network_module, backbone)
+ backbone = backbone_(**backbone_args)
+
+ if "remove_layers" in backbone_args and backbone_args["remove_layers"] is not None:
+ backbone = nn.Sequential(
+ *list(backbone.children())[:][: -backbone_args["remove_layers"]]
+ )
+
+ return backbone
diff --git a/text_recognizer/networks/vit.py b/text_recognizer/networks/vit.py
new file mode 100644
index 0000000..efb3701
--- /dev/null
+++ b/text_recognizer/networks/vit.py
@@ -0,0 +1,150 @@
+"""A Vision Transformer.
+
+Inspired by:
+https://openreview.net/pdf?id=YicbFdNTTy
+
+"""
+from typing import Optional, Tuple
+
+from einops import rearrange, repeat
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.transformer import Transformer
+
+
+class ViT(nn.Module):
+ """Transfomer for image to sequence prediction."""
+
+ def __init__(
+ self,
+ num_encoder_layers: int,
+ num_decoder_layers: int,
+ hidden_dim: int,
+ vocab_size: int,
+ num_heads: int,
+ expansion_dim: int,
+ patch_dim: Tuple[int, int],
+ image_size: Tuple[int, int],
+ dropout_rate: float,
+ trg_pad_index: int,
+ max_len: int,
+ activation: str = "gelu",
+ ) -> None:
+ super().__init__()
+
+ self.trg_pad_index = trg_pad_index
+ self.patch_dim = patch_dim
+ self.num_patches = image_size[-1] // self.patch_dim[1]
+
+ # Encoder
+ self.patch_to_embedding = nn.Linear(
+ self.patch_dim[0] * self.patch_dim[1], hidden_dim
+ )
+ self.cls_token = nn.Parameter(torch.randn(1, 1, hidden_dim))
+ self.character_embedding = nn.Embedding(vocab_size, hidden_dim)
+ self.pos_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim))
+ self.dropout = nn.Dropout(dropout_rate)
+ self._init()
+
+ self.transformer = Transformer(
+ num_encoder_layers,
+ num_decoder_layers,
+ hidden_dim,
+ num_heads,
+ expansion_dim,
+ dropout_rate,
+ activation,
+ )
+
+ self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),)
+
+ def _init(self) -> None:
+ nn.init.normal_(self.character_embedding.weight, std=0.02)
+ # nn.init.normal_(self.pos_embedding.weight, std=0.02)
+
+ def _create_trg_mask(self, trg: Tensor) -> Tensor:
+ # Move this outside the transformer.
+ trg_pad_mask = (trg != self.trg_pad_index)[:, None, None]
+ trg_len = trg.shape[1]
+ trg_sub_mask = torch.tril(
+ torch.ones((trg_len, trg_len), device=trg.device)
+ ).bool()
+ trg_mask = trg_pad_mask & trg_sub_mask
+ return trg_mask
+
+ def encoder(self, src: Tensor) -> Tensor:
+ """Forward pass with the encoder of the transformer."""
+ return self.transformer.encoder(src)
+
+ def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor:
+ """Forward pass with the decoder of the transformer + classification head."""
+ return self.head(
+ self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask)
+ )
+
+ def extract_image_features(self, src: Tensor) -> Tensor:
+ """Extracts image features with a backbone neural network.
+
+ It seem like the winning idea was to swap channels and width dimension and collapse
+ the height dimension. The transformer is learning like a baby with this implementation!!! :D
+ Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D
+
+ Args:
+ src (Tensor): Input tensor.
+
+ Returns:
+ Tensor: A input src to the transformer.
+
+ """
+ # If batch dimension is missing, it needs to be added.
+ if len(src.shape) < 4:
+ src = src[(None,) * (4 - len(src.shape))]
+
+ patches = rearrange(
+ src,
+ "b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
+ p1=self.patch_dim[0],
+ p2=self.patch_dim[1],
+ )
+
+ # From patches to encoded sequence.
+ x = self.patch_to_embedding(patches)
+ b, n, _ = x.shape
+ cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b)
+ x = torch.cat((cls_tokens, x), dim=1)
+ x += self.pos_embedding[:, : (n + 1)]
+ x = self.dropout(x)
+
+ return x
+
+ def target_embedding(self, trg: Tensor) -> Tuple[Tensor, Tensor]:
+ """Encodes target tensor with embedding and postion.
+
+ Args:
+ trg (Tensor): Target tensor.
+
+ Returns:
+ Tuple[Tensor, Tensor]: Encoded target tensor and target mask.
+
+ """
+ _, n = trg.shape
+ trg = self.character_embedding(trg.long())
+ trg += self.pos_embedding[:, :n]
+ return trg
+
+ def decode_image_features(self, h: Tensor, trg: Optional[Tensor] = None) -> Tensor:
+ """Takes images features from the backbone and decodes them with the transformer."""
+ trg_mask = self._create_trg_mask(trg)
+ trg = self.target_embedding(trg)
+ out = self.transformer(h, trg, trg_mask=trg_mask)
+
+ logits = self.head(out)
+ return logits
+
+ def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor:
+ """Forward pass with CNN transfomer."""
+ h = self.extract_image_features(x)
+ logits = self.decode_image_features(h, trg)
+ return logits
diff --git a/text_recognizer/networks/vq_transformer.py b/text_recognizer/networks/vq_transformer.py
new file mode 100644
index 0000000..c673d96
--- /dev/null
+++ b/text_recognizer/networks/vq_transformer.py
@@ -0,0 +1,150 @@
+"""A VQ-Transformer for image to text recognition."""
+from typing import Dict, Optional, Tuple
+
+from einops import rearrange, repeat
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.transformer import PositionalEncoding, Transformer
+from text_recognizer.networks.util import activation_function
+from text_recognizer.networks.util import configure_backbone
+from text_recognizer.networks.vqvae.encoder import _ResidualBlock
+
+
+class VQTransformer(nn.Module):
+ """VQ+Transfomer for image to character sequence prediction."""
+
+ def __init__(
+ self,
+ num_encoder_layers: int,
+ num_decoder_layers: int,
+ hidden_dim: int,
+ vocab_size: int,
+ num_heads: int,
+ adaptive_pool_dim: Tuple,
+ expansion_dim: int,
+ dropout_rate: float,
+ trg_pad_index: int,
+ max_len: int,
+ backbone: str,
+ backbone_args: Optional[Dict] = None,
+ activation: str = "gelu",
+ ) -> None:
+ super().__init__()
+
+ # Configure vector quantized backbone.
+ self.backbone = configure_backbone(backbone, backbone_args)
+ self.conv = nn.Sequential(
+ nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=2),
+ nn.ReLU(inplace=True),
+ )
+
+ # Configure embeddings for Transformer network.
+ self.trg_pad_index = trg_pad_index
+ self.vocab_size = vocab_size
+ self.character_embedding = nn.Embedding(self.vocab_size, hidden_dim)
+ self.src_position_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim))
+ self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate)
+ nn.init.normal_(self.character_embedding.weight, std=0.02)
+
+ self.adaptive_pool = (
+ nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None
+ )
+
+ self.transformer = Transformer(
+ num_encoder_layers,
+ num_decoder_layers,
+ hidden_dim,
+ num_heads,
+ expansion_dim,
+ dropout_rate,
+ activation,
+ )
+
+ self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),)
+
+ def _create_trg_mask(self, trg: Tensor) -> Tensor:
+ # Move this outside the transformer.
+ trg_pad_mask = (trg != self.trg_pad_index)[:, None, None]
+ trg_len = trg.shape[1]
+ trg_sub_mask = torch.tril(
+ torch.ones((trg_len, trg_len), device=trg.device)
+ ).bool()
+ trg_mask = trg_pad_mask & trg_sub_mask
+ return trg_mask
+
+ def encoder(self, src: Tensor) -> Tensor:
+ """Forward pass with the encoder of the transformer."""
+ return self.transformer.encoder(src)
+
+ def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor:
+ """Forward pass with the decoder of the transformer + classification head."""
+ return self.head(
+ self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask)
+ )
+
+ def extract_image_features(self, src: Tensor) -> Tuple[Tensor, Tensor]:
+ """Extracts image features with a backbone neural network.
+
+ It seem like the winning idea was to swap channels and width dimension and collapse
+ the height dimension. The transformer is learning like a baby with this implementation!!! :D
+ Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D
+
+ Args:
+ src (Tensor): Input tensor.
+
+ Returns:
+ Tensor: The input src to the transformer and the vq loss.
+
+ """
+ # If batch dimension is missing, it needs to be added.
+ if len(src.shape) < 4:
+ src = src[(None,) * (4 - len(src.shape))]
+ src, vq_loss = self.backbone.encode(src)
+ # src = self.backbone.decoder.res_block(src)
+ src = self.conv(src)
+
+ if self.adaptive_pool is not None:
+ src = rearrange(src, "b c h w -> b w c h")
+ src = self.adaptive_pool(src)
+ src = src.squeeze(3)
+ else:
+ src = rearrange(src, "b c h w -> b (w h) c")
+
+ b, t, _ = src.shape
+
+ src += self.src_position_embedding[:, :t]
+
+ return src, vq_loss
+
+ def target_embedding(self, trg: Tensor) -> Tensor:
+ """Encodes target tensor with embedding and postion.
+
+ Args:
+ trg (Tensor): Target tensor.
+
+ Returns:
+ Tensor: Encoded target tensor.
+
+ """
+ trg = self.character_embedding(trg.long())
+ trg = self.trg_position_encoding(trg)
+ return trg
+
+ def decode_image_features(
+ self, image_features: Tensor, trg: Optional[Tensor] = None
+ ) -> Tensor:
+ """Takes images features from the backbone and decodes them with the transformer."""
+ trg_mask = self._create_trg_mask(trg)
+ trg = self.target_embedding(trg)
+ out = self.transformer(image_features, trg, trg_mask=trg_mask)
+
+ logits = self.head(out)
+ return logits
+
+ def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor:
+ """Forward pass with CNN transfomer."""
+ image_features, vq_loss = self.extract_image_features(x)
+ logits = self.decode_image_features(image_features, trg)
+ return logits, vq_loss
diff --git a/text_recognizer/networks/vqvae/__init__.py b/text_recognizer/networks/vqvae/__init__.py
new file mode 100644
index 0000000..763953c
--- /dev/null
+++ b/text_recognizer/networks/vqvae/__init__.py
@@ -0,0 +1,5 @@
+"""VQ-VAE module."""
+from .decoder import Decoder
+from .encoder import Encoder
+from .vector_quantizer import VectorQuantizer
+from .vqvae import VQVAE
diff --git a/text_recognizer/networks/vqvae/decoder.py b/text_recognizer/networks/vqvae/decoder.py
new file mode 100644
index 0000000..8847aba
--- /dev/null
+++ b/text_recognizer/networks/vqvae/decoder.py
@@ -0,0 +1,133 @@
+"""CNN decoder for the VQ-VAE."""
+
+from typing import List, Optional, Tuple, Type
+
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import activation_function
+from text_recognizer.networks.vqvae.encoder import _ResidualBlock
+
+
+class Decoder(nn.Module):
+ """A CNN encoder network."""
+
+ def __init__(
+ self,
+ channels: List[int],
+ kernel_sizes: List[int],
+ strides: List[int],
+ num_residual_layers: int,
+ embedding_dim: int,
+ upsampling: Optional[List[List[int]]] = None,
+ activation: str = "leaky_relu",
+ dropout_rate: float = 0.0,
+ ) -> None:
+ super().__init__()
+
+ if dropout_rate:
+ if activation == "selu":
+ dropout = nn.AlphaDropout(p=dropout_rate)
+ else:
+ dropout = nn.Dropout(p=dropout_rate)
+ else:
+ dropout = None
+
+ self.upsampling = upsampling
+
+ self.res_block = nn.ModuleList([])
+ self.upsampling_block = nn.ModuleList([])
+
+ self.embedding_dim = embedding_dim
+ activation = activation_function(activation)
+
+ # Configure encoder.
+ self.decoder = self._build_decoder(
+ channels, kernel_sizes, strides, num_residual_layers, activation, dropout,
+ )
+
+ def _build_decompression_block(
+ self,
+ in_channels: int,
+ channels: int,
+ kernel_sizes: List[int],
+ strides: List[int],
+ activation: Type[nn.Module],
+ dropout: Optional[Type[nn.Module]],
+ ) -> nn.ModuleList:
+ modules = nn.ModuleList([])
+ configuration = zip(channels, kernel_sizes, strides)
+ for i, (out_channels, kernel_size, stride) in enumerate(configuration):
+ modules.append(
+ nn.Sequential(
+ nn.ConvTranspose2d(
+ in_channels,
+ out_channels,
+ kernel_size,
+ stride=stride,
+ padding=1,
+ ),
+ activation,
+ )
+ )
+
+ if i < len(self.upsampling):
+ modules.append(nn.Upsample(size=self.upsampling[i]),)
+
+ if dropout is not None:
+ modules.append(dropout)
+
+ in_channels = out_channels
+
+ modules.extend(
+ nn.Sequential(
+ nn.ConvTranspose2d(
+ in_channels, 1, kernel_size=kernel_size, stride=stride, padding=1
+ ),
+ nn.Tanh(),
+ )
+ )
+
+ return modules
+
+ def _build_decoder(
+ self,
+ channels: int,
+ kernel_sizes: List[int],
+ strides: List[int],
+ num_residual_layers: int,
+ activation: Type[nn.Module],
+ dropout: Optional[Type[nn.Module]],
+ ) -> nn.Sequential:
+
+ self.res_block.append(
+ nn.Conv2d(self.embedding_dim, channels[0], kernel_size=1, stride=1,)
+ )
+
+ # Bottleneck module.
+ self.res_block.extend(
+ nn.ModuleList(
+ [
+ _ResidualBlock(channels[0], channels[0], dropout)
+ for i in range(num_residual_layers)
+ ]
+ )
+ )
+
+ # Decompression module
+ self.upsampling_block.extend(
+ self._build_decompression_block(
+ channels[0], channels[1:], kernel_sizes, strides, activation, dropout
+ )
+ )
+
+ self.res_block = nn.Sequential(*self.res_block)
+ self.upsampling_block = nn.Sequential(*self.upsampling_block)
+
+ return nn.Sequential(self.res_block, self.upsampling_block)
+
+ def forward(self, z_q: Tensor) -> Tensor:
+ """Reconstruct input from given codes."""
+ x_reconstruction = self.decoder(z_q)
+ return x_reconstruction
diff --git a/text_recognizer/networks/vqvae/encoder.py b/text_recognizer/networks/vqvae/encoder.py
new file mode 100644
index 0000000..d3adac5
--- /dev/null
+++ b/text_recognizer/networks/vqvae/encoder.py
@@ -0,0 +1,147 @@
+"""CNN encoder for the VQ-VAE."""
+from typing import List, Optional, Tuple, Type
+
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import activation_function
+from text_recognizer.networks.vqvae.vector_quantizer import VectorQuantizer
+
+
+class _ResidualBlock(nn.Module):
+ def __init__(
+ self, in_channels: int, out_channels: int, dropout: Optional[Type[nn.Module]],
+ ) -> None:
+ super().__init__()
+ self.block = [
+ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False),
+ nn.ReLU(inplace=True),
+ nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False),
+ ]
+
+ if dropout is not None:
+ self.block.append(dropout)
+
+ self.block = nn.Sequential(*self.block)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Apply the residual forward pass."""
+ return x + self.block(x)
+
+
+class Encoder(nn.Module):
+ """A CNN encoder network."""
+
+ def __init__(
+ self,
+ in_channels: int,
+ channels: List[int],
+ kernel_sizes: List[int],
+ strides: List[int],
+ num_residual_layers: int,
+ embedding_dim: int,
+ num_embeddings: int,
+ beta: float = 0.25,
+ activation: str = "leaky_relu",
+ dropout_rate: float = 0.0,
+ ) -> None:
+ super().__init__()
+
+ if dropout_rate:
+ if activation == "selu":
+ dropout = nn.AlphaDropout(p=dropout_rate)
+ else:
+ dropout = nn.Dropout(p=dropout_rate)
+ else:
+ dropout = None
+
+ self.embedding_dim = embedding_dim
+ self.num_embeddings = num_embeddings
+ self.beta = beta
+ activation = activation_function(activation)
+
+ # Configure encoder.
+ self.encoder = self._build_encoder(
+ in_channels,
+ channels,
+ kernel_sizes,
+ strides,
+ num_residual_layers,
+ activation,
+ dropout,
+ )
+
+ # Configure Vector Quantizer.
+ self.vector_quantizer = VectorQuantizer(
+ self.num_embeddings, self.embedding_dim, self.beta
+ )
+
+ def _build_compression_block(
+ self,
+ in_channels: int,
+ channels: int,
+ kernel_sizes: List[int],
+ strides: List[int],
+ activation: Type[nn.Module],
+ dropout: Optional[Type[nn.Module]],
+ ) -> nn.ModuleList:
+ modules = nn.ModuleList([])
+ configuration = zip(channels, kernel_sizes, strides)
+ for out_channels, kernel_size, stride in configuration:
+ modules.append(
+ nn.Sequential(
+ nn.Conv2d(
+ in_channels, out_channels, kernel_size, stride=stride, padding=1
+ ),
+ activation,
+ )
+ )
+
+ if dropout is not None:
+ modules.append(dropout)
+
+ in_channels = out_channels
+
+ return modules
+
+ def _build_encoder(
+ self,
+ in_channels: int,
+ channels: int,
+ kernel_sizes: List[int],
+ strides: List[int],
+ num_residual_layers: int,
+ activation: Type[nn.Module],
+ dropout: Optional[Type[nn.Module]],
+ ) -> nn.Sequential:
+ encoder = nn.ModuleList([])
+
+ # compression module
+ encoder.extend(
+ self._build_compression_block(
+ in_channels, channels, kernel_sizes, strides, activation, dropout
+ )
+ )
+
+ # Bottleneck module.
+ encoder.extend(
+ nn.ModuleList(
+ [
+ _ResidualBlock(channels[-1], channels[-1], dropout)
+ for i in range(num_residual_layers)
+ ]
+ )
+ )
+
+ encoder.append(
+ nn.Conv2d(channels[-1], self.embedding_dim, kernel_size=1, stride=1,)
+ )
+
+ return nn.Sequential(*encoder)
+
+ def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
+ """Encodes input into a discrete representation."""
+ z_e = self.encoder(x)
+ z_q, vq_loss = self.vector_quantizer(z_e)
+ return z_q, vq_loss
diff --git a/text_recognizer/networks/vqvae/vector_quantizer.py b/text_recognizer/networks/vqvae/vector_quantizer.py
new file mode 100644
index 0000000..f92c7ee
--- /dev/null
+++ b/text_recognizer/networks/vqvae/vector_quantizer.py
@@ -0,0 +1,119 @@
+"""Implementation of a Vector Quantized Variational AutoEncoder.
+
+Reference:
+https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py
+
+"""
+
+from einops import rearrange
+import torch
+from torch import nn
+from torch import Tensor
+from torch.nn import functional as F
+
+
+class VectorQuantizer(nn.Module):
+ """The codebook that contains quantized vectors."""
+
+ def __init__(
+ self, num_embeddings: int, embedding_dim: int, beta: float = 0.25
+ ) -> None:
+ super().__init__()
+ self.K = num_embeddings
+ self.D = embedding_dim
+ self.beta = beta
+
+ self.embedding = nn.Embedding(self.K, self.D)
+
+ # Initialize the codebook.
+ nn.init.uniform_(self.embedding.weight, -1 / self.K, 1 / self.K)
+
+ def discretization_bottleneck(self, latent: Tensor) -> Tensor:
+ """Computes the code nearest to the latent representation.
+
+ First we compute the posterior categorical distribution, and then map
+ the latent representation to the nearest element of the embedding.
+
+ Args:
+ latent (Tensor): The latent representation.
+
+ Shape:
+ - latent :math:`(B x H x W, D)`
+
+ Returns:
+ Tensor: The quantized embedding vector.
+
+ """
+ # Store latent shape.
+ b, h, w, d = latent.shape
+
+ # Flatten the latent representation to 2D.
+ latent = rearrange(latent, "b h w d -> (b h w) d")
+
+ # Compute the L2 distance between the latents and the embeddings.
+ l2_distance = (
+ torch.sum(latent ** 2, dim=1, keepdim=True)
+ + torch.sum(self.embedding.weight ** 2, dim=1)
+ - 2 * latent @ self.embedding.weight.t()
+ ) # [BHW x K]
+
+ # Find the embedding k nearest to each latent.
+ encoding_indices = torch.argmin(l2_distance, dim=1).unsqueeze(1) # [BHW, 1]
+
+ # Convert to one-hot encodings, aka discrete bottleneck.
+ one_hot_encoding = torch.zeros(
+ encoding_indices.shape[0], self.K, device=latent.device
+ )
+ one_hot_encoding.scatter_(1, encoding_indices, 1) # [BHW x K]
+
+ # Embedding quantization.
+ quantized_latent = one_hot_encoding @ self.embedding.weight # [BHW, D]
+ quantized_latent = rearrange(
+ quantized_latent, "(b h w) d -> b h w d", b=b, h=h, w=w
+ )
+
+ return quantized_latent
+
+ def vq_loss(self, latent: Tensor, quantized_latent: Tensor) -> Tensor:
+ """Vector Quantization loss.
+
+ The vector quantization algorithm allows us to create a codebook. The VQ
+ algorithm works by moving the embedding vectors towards the encoder outputs.
+
+ The embedding loss moves the embedding vector towards the encoder outputs. The
+ .detach() works as the stop gradient (sg) described in the paper.
+
+ Because the volume of the embedding space is dimensionless, it can arbitarily
+ grow if the embeddings are not trained as fast as the encoder parameters. To
+ mitigate this, a commitment loss is added in the second term which makes sure
+ that the encoder commits to an embedding and that its output does not grow.
+
+ Args:
+ latent (Tensor): The encoder output.
+ quantized_latent (Tensor): The quantized latent.
+
+ Returns:
+ Tensor: The combinded VQ loss.
+
+ """
+ embedding_loss = F.mse_loss(quantized_latent, latent.detach())
+ commitment_loss = F.mse_loss(quantized_latent.detach(), latent)
+ return embedding_loss + self.beta * commitment_loss
+
+ def forward(self, latent: Tensor) -> Tensor:
+ """Forward pass that returns the quantized vector and the vq loss."""
+ # Rearrange latent representation s.t. the hidden dim is at the end.
+ latent = rearrange(latent, "b d h w -> b h w d")
+
+ # Maps latent to the nearest code in the codebook.
+ quantized_latent = self.discretization_bottleneck(latent)
+
+ loss = self.vq_loss(latent, quantized_latent)
+
+ # Add residue to the quantized latent.
+ quantized_latent = latent + (quantized_latent - latent).detach()
+
+ # Rearrange the quantized shape back to the original shape.
+ quantized_latent = rearrange(quantized_latent, "b h w d -> b d h w")
+
+ return quantized_latent, loss
diff --git a/text_recognizer/networks/vqvae/vqvae.py b/text_recognizer/networks/vqvae/vqvae.py
new file mode 100644
index 0000000..50448b4
--- /dev/null
+++ b/text_recognizer/networks/vqvae/vqvae.py
@@ -0,0 +1,74 @@
+"""The VQ-VAE."""
+
+from typing import List, Optional, Tuple, Type
+
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.vqvae import Decoder, Encoder
+
+
+class VQVAE(nn.Module):
+ """Vector Quantized Variational AutoEncoder."""
+
+ def __init__(
+ self,
+ in_channels: int,
+ channels: List[int],
+ kernel_sizes: List[int],
+ strides: List[int],
+ num_residual_layers: int,
+ embedding_dim: int,
+ num_embeddings: int,
+ upsampling: Optional[List[List[int]]] = None,
+ beta: float = 0.25,
+ activation: str = "leaky_relu",
+ dropout_rate: float = 0.0,
+ ) -> None:
+ super().__init__()
+
+ # configure encoder.
+ self.encoder = Encoder(
+ in_channels,
+ channels,
+ kernel_sizes,
+ strides,
+ num_residual_layers,
+ embedding_dim,
+ num_embeddings,
+ beta,
+ activation,
+ dropout_rate,
+ )
+
+ # Configure decoder.
+ channels.reverse()
+ kernel_sizes.reverse()
+ strides.reverse()
+ self.decoder = Decoder(
+ channels,
+ kernel_sizes,
+ strides,
+ num_residual_layers,
+ embedding_dim,
+ upsampling,
+ activation,
+ dropout_rate,
+ )
+
+ def encode(self, x: Tensor) -> Tuple[Tensor, Tensor]:
+ """Encodes input to a latent code."""
+ return self.encoder(x)
+
+ def decode(self, z_q: Tensor) -> Tensor:
+ """Reconstructs input from latent codes."""
+ return self.decoder(z_q)
+
+ def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
+ """Compresses and decompresses input."""
+ if len(x.shape) < 4:
+ x = x[(None,) * (4 - len(x.shape))]
+ z_q, vq_loss = self.encode(x)
+ x_reconstruction = self.decode(z_q)
+ return x_reconstruction, vq_loss
diff --git a/text_recognizer/networks/wide_resnet.py b/text_recognizer/networks/wide_resnet.py
new file mode 100644
index 0000000..b767778
--- /dev/null
+++ b/text_recognizer/networks/wide_resnet.py
@@ -0,0 +1,221 @@
+"""Wide Residual CNN."""
+from functools import partial
+from typing import Callable, Dict, List, Optional, Type, Union
+
+from einops.layers.torch import Reduce
+import numpy as np
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import activation_function
+
+
+def conv3x3(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
+ """Helper function for a 3x3 2d convolution."""
+ return nn.Conv2d(
+ in_channels=in_planes,
+ out_channels=out_planes,
+ kernel_size=3,
+ stride=stride,
+ padding=1,
+ bias=False,
+ )
+
+
+def conv_init(module: Type[nn.Module]) -> None:
+ """Initializes the weights for convolution and batchnorms."""
+ classname = module.__class__.__name__
+ if classname.find("Conv") != -1:
+ nn.init.xavier_uniform_(module.weight, gain=np.sqrt(2))
+ nn.init.constant_(module.bias, 0)
+ elif classname.find("BatchNorm") != -1:
+ nn.init.constant_(module.weight, 1)
+ nn.init.constant_(module.bias, 0)
+
+
+class WideBlock(nn.Module):
+ """Block used in WideResNet."""
+
+ def __init__(
+ self,
+ in_planes: int,
+ out_planes: int,
+ dropout_rate: float,
+ stride: int = 1,
+ activation: str = "relu",
+ ) -> None:
+ super().__init__()
+ self.in_planes = in_planes
+ self.out_planes = out_planes
+ self.dropout_rate = dropout_rate
+ self.stride = stride
+ self.activation = activation_function(activation)
+
+ # Build blocks.
+ self.blocks = nn.Sequential(
+ nn.BatchNorm2d(self.in_planes),
+ self.activation,
+ conv3x3(in_planes=self.in_planes, out_planes=self.out_planes),
+ nn.Dropout(p=self.dropout_rate),
+ nn.BatchNorm2d(self.out_planes),
+ self.activation,
+ conv3x3(
+ in_planes=self.out_planes,
+ out_planes=self.out_planes,
+ stride=self.stride,
+ ),
+ )
+
+ self.shortcut = (
+ nn.Sequential(
+ nn.Conv2d(
+ in_channels=self.in_planes,
+ out_channels=self.out_planes,
+ kernel_size=1,
+ stride=self.stride,
+ bias=False,
+ ),
+ )
+ if self._apply_shortcut
+ else None
+ )
+
+ @property
+ def _apply_shortcut(self) -> bool:
+ """If shortcut should be applied or not."""
+ return self.stride != 1 or self.in_planes != self.out_planes
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass."""
+ residual = x
+ if self._apply_shortcut:
+ residual = self.shortcut(x)
+ x = self.blocks(x)
+ x += residual
+ return x
+
+
+class WideResidualNetwork(nn.Module):
+ """WideResNet for character predictions.
+
+ Can be used for classification or encoding of images to a latent vector.
+
+ """
+
+ def __init__(
+ self,
+ in_channels: int = 1,
+ in_planes: int = 16,
+ num_classes: int = 80,
+ depth: int = 16,
+ width_factor: int = 10,
+ dropout_rate: float = 0.0,
+ num_layers: int = 3,
+ block: Type[nn.Module] = WideBlock,
+ num_stages: Optional[List[int]] = None,
+ activation: str = "relu",
+ use_decoder: bool = True,
+ ) -> None:
+ """The initialization of the WideResNet.
+
+ Args:
+ in_channels (int): Number of input channels. Defaults to 1.
+ in_planes (int): Number of channels to use in the first output kernel. Defaults to 16.
+ num_classes (int): Number of classes. Defaults to 80.
+ depth (int): Set the number of blocks to use. Defaults to 16.
+ width_factor (int): Factor for scaling the number of channels in the network. Defaults to 10.
+ dropout_rate (float): The dropout rate. Defaults to 0.0.
+ num_layers (int): Number of layers of blocks. Defaults to 3.
+ block (Type[nn.Module]): The default block is WideBlock. Defaults to WideBlock.
+ num_stages (List[int]): If given, will use these channel values. Defaults to None.
+ activation (str): Name of the activation to use. Defaults to "relu".
+ use_decoder (bool): If True, the network output character predictions, if False, the network outputs a
+ latent vector. Defaults to True.
+
+ Raises:
+ RuntimeError: If the depth is not of the size `6n+4`.
+
+ """
+
+ super().__init__()
+ if (depth - 4) % 6 != 0:
+ raise RuntimeError("Wide-resnet depth should be 6n+4")
+ self.in_channels = in_channels
+ self.in_planes = in_planes
+ self.num_classes = num_classes
+ self.num_blocks = (depth - 4) // 6
+ self.width_factor = width_factor
+ self.num_layers = num_layers
+ self.block = block
+ self.dropout_rate = dropout_rate
+ self.activation = activation_function(activation)
+
+ if num_stages is None:
+ self.num_stages = [self.in_planes] + [
+ self.in_planes * 2 ** n * self.width_factor
+ for n in range(self.num_layers)
+ ]
+ else:
+ self.num_stages = [self.in_planes] + num_stages
+
+ self.num_stages = list(zip(self.num_stages, self.num_stages[1:]))
+ self.strides = [1] + [2] * (self.num_layers - 1)
+
+ self.encoder = nn.Sequential(
+ conv3x3(in_planes=self.in_channels, out_planes=self.in_planes),
+ *[
+ self._configure_wide_layer(
+ in_planes=in_planes,
+ out_planes=out_planes,
+ stride=stride,
+ activation=activation,
+ )
+ for (in_planes, out_planes), stride in zip(
+ self.num_stages, self.strides
+ )
+ ],
+ )
+
+ self.decoder = (
+ nn.Sequential(
+ nn.BatchNorm2d(self.num_stages[-1][-1], momentum=0.8),
+ self.activation,
+ Reduce("b c h w -> b c", "mean"),
+ nn.Linear(
+ in_features=self.num_stages[-1][-1], out_features=self.num_classes
+ ),
+ )
+ if use_decoder
+ else None
+ )
+
+ # self.apply(conv_init)
+
+ def _configure_wide_layer(
+ self, in_planes: int, out_planes: int, stride: int, activation: str
+ ) -> List:
+ strides = [stride] + [1] * (self.num_blocks - 1)
+ planes = [out_planes] * len(strides)
+ planes = [(in_planes, out_planes)] + list(zip(planes, planes[1:]))
+ return nn.Sequential(
+ *[
+ self.block(
+ in_planes=in_planes,
+ out_planes=out_planes,
+ dropout_rate=self.dropout_rate,
+ stride=stride,
+ activation=activation,
+ )
+ for (in_planes, out_planes), stride in zip(planes, strides)
+ ]
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Feedforward pass."""
+ if len(x.shape) < 4:
+ x = x[(None,) * int(4 - len(x.shape))]
+ x = self.encoder(x)
+ if self.decoder is not None:
+ x = self.decoder(x)
+ return x