diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-23 21:59:20 +0100 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-23 21:59:20 +0100 |
commit | 74c907a17379688967dc4b3f41a44ba83034f5e0 (patch) | |
tree | b37ae348d69129ad87f2abf85840837d95465ef3 /text_recognizer | |
parent | ae589fb3ffdbf6c4bb1ae35345f7a3665deeebc5 (diff) |
remove old emnist line dataset
Diffstat (limited to 'text_recognizer')
-rw-r--r-- | text_recognizer/datasets/emnist_lines_dataset.py | 359 |
1 files changed, 0 insertions, 359 deletions
diff --git a/text_recognizer/datasets/emnist_lines_dataset.py b/text_recognizer/datasets/emnist_lines_dataset.py deleted file mode 100644 index 1992446..0000000 --- a/text_recognizer/datasets/emnist_lines_dataset.py +++ /dev/null @@ -1,359 +0,0 @@ -"""Emnist Lines dataset: synthetic handwritten lines dataset made from Emnist characters.""" - -from collections import defaultdict -from pathlib import Path -from typing import Callable, Dict, List, Optional, Tuple, Union - -import click -import h5py -from loguru import logger -import numpy as np -import torch -from torch import Tensor -import torch.nn.functional as F -from torchvision.transforms import ToTensor - -from text_recognizer.datasets.dataset import Dataset -from text_recognizer.datasets.emnist_dataset import EmnistDataset, Transpose -from text_recognizer.datasets.sentence_generator import SentenceGenerator -from text_recognizer.datasets.util import ( - DATA_DIRNAME, - EmnistMapper, - ESSENTIALS_FILENAME, -) - -DATA_DIRNAME = DATA_DIRNAME / "processed" / "emnist_lines" - -MAX_WIDTH = 952 - - -class EmnistLinesDataset(Dataset): - """Synthetic dataset of lines from the Brown corpus with Emnist characters.""" - - def __init__( - self, - train: bool = False, - transform: Optional[Callable] = None, - target_transform: Optional[Callable] = None, - subsample_fraction: float = None, - max_length: int = 34, - min_overlap: float = 0, - max_overlap: float = 0.33, - num_samples: int = 10000, - seed: int = 4711, - init_token: Optional[str] = None, - pad_token: Optional[str] = None, - eos_token: Optional[str] = None, - lower: bool = False, - ) -> None: - """Set attributes and loads the dataset. - - Args: - train (bool): Flag for the filename. Defaults to False. Defaults to None. - transform (Optional[Callable]): The transform of the data. Defaults to None. - target_transform (Optional[Callable]): The transform of the target. Defaults to None. - subsample_fraction (float): The fraction of the dataset to use for training. Defaults to None. - max_length (int): The maximum number of characters. Defaults to 34. - min_overlap (float): The minimum overlap between concatenated images. Defaults to 0. - max_overlap (float): The maximum overlap between concatenated images. Defaults to 0.33. - num_samples (int): Number of samples to generate. Defaults to 10000. - seed (int): Seed number. Defaults to 4711. - init_token (Optional[str]): String representing the start of sequence token. Defaults to None. - pad_token (Optional[str]): String representing the pad token. Defaults to None. - eos_token (Optional[str]): String representing the end of sequence token. Defaults to None. - lower (bool): If True, convert uppercase letters to lowercase. Otherwise, use both upper and lowercase. - - """ - self.pad_token = "_" if pad_token is None else pad_token - - super().__init__( - train=train, - transform=transform, - target_transform=target_transform, - subsample_fraction=subsample_fraction, - init_token=init_token, - pad_token=self.pad_token, - eos_token=eos_token, - lower=lower, - ) - - # Extract dataset information. - self._input_shape = self._mapper.input_shape - self.num_classes = self._mapper.num_classes - - self.max_length = max_length - self.min_overlap = min_overlap - self.max_overlap = max_overlap - self.num_samples = num_samples - self._input_shape = ( - self.input_shape[0], - self.input_shape[1] * self.max_length, - ) - self._output_shape = (self.max_length, self.num_classes) - self.seed = seed - - # Placeholders for the dataset. - self._data = None - self._target = None - - def __getitem__(self, index: Union[int, Tensor]) -> Tuple[Tensor, Tensor]: - """Fetches data, target pair of the dataset for a given and index or indices. - - Args: - index (Union[int, Tensor]): Either a list or int of indices/index. - - Returns: - Tuple[Tensor, Tensor]: Data target pair. - - """ - if torch.is_tensor(index): - index = index.tolist() - - data = self.data[index] - targets = self.targets[index] - - if self.transform: - data = self.transform(data) - - if self.target_transform: - targets = self.target_transform(targets) - - return data, targets - - def __repr__(self) -> str: - """Returns information about the dataset.""" - return ( - "EMNIST Lines Dataset\n" # pylint: disable=no-member - f"Max length: {self.max_length}\n" - f"Min overlap: {self.min_overlap}\n" - f"Max overlap: {self.max_overlap}\n" - f"Num classes: {self.num_classes}\n" - f"Input shape: {self.input_shape}\n" - f"Data: {self.data.shape}\n" - f"Tagets: {self.targets.shape}\n" - ) - - @property - def data_filename(self) -> Path: - """Path to the h5 file.""" - filename = "train.pt" if self.train else "test.pt" - return DATA_DIRNAME / filename - - def load_or_generate_data(self) -> None: - """Loads the dataset, if it does not exist a new dataset is generated before loading it.""" - np.random.seed(self.seed) - - if not self.data_filename.exists(): - self._generate_data() - self._load_data() - self._subsample() - - def _load_data(self) -> None: - """Loads the dataset from the h5 file.""" - logger.debug("EmnistLinesDataset loading data from HDF5...") - with h5py.File(self.data_filename, "r") as f: - self._data = f["data"][()] - self._targets = f["targets"][()] - - def _generate_data(self) -> str: - """Generates a dataset with the Brown corpus and Emnist characters.""" - logger.debug("Generating data...") - - sentence_generator = SentenceGenerator(self.max_length) - - # Load emnist dataset. - emnist = EmnistDataset( - train=self.train, sample_to_balance=True, pad_token=self.pad_token - ) - emnist.load_or_generate_data() - - samples_by_character = get_samples_by_character( - emnist.data.numpy(), emnist.targets.numpy(), self.mapper.mapping, - ) - - DATA_DIRNAME.mkdir(parents=True, exist_ok=True) - with h5py.File(self.data_filename, "a") as f: - data, targets = create_dataset_of_images( - self.num_samples, - samples_by_character, - sentence_generator, - self.min_overlap, - self.max_overlap, - ) - - targets = convert_strings_to_categorical_labels( - targets, emnist.inverse_mapping - ) - - f.create_dataset("data", data=data, dtype="u1", compression="lzf") - f.create_dataset("targets", data=targets, dtype="u1", compression="lzf") - - -def get_samples_by_character( - samples: np.ndarray, labels: np.ndarray, mapping: Dict -) -> defaultdict: - """Creates a dictionary with character as key and value as the list of images of that character. - - Args: - samples (np.ndarray): Dataset of images of characters. - labels (np.ndarray): The labels for each image. - mapping (Dict): The Emnist mapping dictionary. - - Returns: - defaultdict: A dictionary with characters as keys and list of images as values. - - """ - samples_by_character = defaultdict(list) - for sample, label in zip(samples, labels.flatten()): - samples_by_character[mapping[label]].append(sample) - return samples_by_character - - -def select_letter_samples_for_string( - string: str, samples_by_character: Dict -) -> List[np.ndarray]: - """Randomly selects Emnist characters to use for the senetence. - - Args: - string (str): The word or sentence. - samples_by_character (Dict): The dictionary of emnist images of each character. - - Returns: - List[np.ndarray]: A list of emnist images of the string. - - """ - zero_image = np.zeros((28, 28), np.uint8) - sample_image_by_character = {} - for character in string: - if character in sample_image_by_character: - continue - samples = samples_by_character[character] - sample = samples[np.random.choice(len(samples))] if samples else zero_image - sample_image_by_character[character] = sample.reshape(28, 28).swapaxes(0, 1) - return [sample_image_by_character[character] for character in string] - - -def construct_image_from_string( - string: str, samples_by_character: Dict, min_overlap: float, max_overlap: float -) -> np.ndarray: - """Concatenates images of the characters in the string. - - The concatination is made with randomly selected overlap so that some portion of the character will overlap. - - Args: - string (str): The word or sentence. - samples_by_character (Dict): The dictionary of emnist images of each character. - min_overlap (float): Minimum amount of overlap between Emnist images. - max_overlap (float): Maximum amount of overlap between Emnist images. - - Returns: - np.ndarray: The Emnist image of the string. - - """ - overlap = np.random.uniform(min_overlap, max_overlap) - sampled_images = select_letter_samples_for_string(string, samples_by_character) - length = len(sampled_images) - height, width = sampled_images[0].shape - next_overlap_width = width - int(overlap * width) - concatenated_image = np.zeros((height, width * length), np.uint8) - x = 0 - for image in sampled_images: - concatenated_image[:, x : (x + width)] += image - x += next_overlap_width - - if concatenated_image.shape[-1] > MAX_WIDTH: - concatenated_image = Tensor(concatenated_image).unsqueeze(0) - concatenated_image = F.interpolate( - concatenated_image, size=MAX_WIDTH, mode="nearest" - ) - concatenated_image = concatenated_image.squeeze(0).numpy() - - return np.minimum(255, concatenated_image) - - -def create_dataset_of_images( - length: int, - samples_by_character: Dict, - sentence_generator: SentenceGenerator, - min_overlap: float, - max_overlap: float, -) -> Tuple[np.ndarray, List[str]]: - """Creates a dataset with images and labels from strings generated from the SentenceGenerator. - - Args: - length (int): The number of characters for each string. - samples_by_character (Dict): The dictionary of emnist images of each character. - sentence_generator (SentenceGenerator): A SentenceGenerator objest. - min_overlap (float): Minimum amount of overlap between Emnist images. - max_overlap (float): Maximum amount of overlap between Emnist images. - - Returns: - Tuple[np.ndarray, List[str]]: A list of Emnist images and a list of the strings (labels). - - Raises: - RuntimeError: If the sentence generator is not able to generate a string. - - """ - sample_label = sentence_generator.generate() - sample_image = construct_image_from_string(sample_label, samples_by_character, 0, 0) - images = np.zeros((length, sample_image.shape[0], sample_image.shape[1]), np.uint8) - labels = [] - for n in range(length): - label = None - # Try several times to generate before actually throwing an error. - for _ in range(10): - try: - label = sentence_generator.generate() - break - except Exception: # pylint: disable=broad-except - pass - if label is None: - raise RuntimeError("Was not able to generate a valid string.") - images[n] = construct_image_from_string( - label, samples_by_character, min_overlap, max_overlap - ) - labels.append(label) - return images, labels - - -def convert_strings_to_categorical_labels( - labels: List[str], mapping: Dict -) -> np.ndarray: - """Translates a string of characters in to a target array of class int.""" - return np.array([[mapping[c] for c in label] for label in labels]) - - -@click.command() -@click.option( - "--max_length", type=int, default=34, help="Number of characters in a sentence." -) -@click.option( - "--min_overlap", type=float, default=0.0, help="Min overlap between characters." -) -@click.option( - "--max_overlap", type=float, default=0.33, help="Max overlap between characters." -) -@click.option("--num_train", type=int, default=10_000, help="Number of train examples.") -@click.option("--num_test", type=int, default=1_000, help="Number of test examples.") -def create_datasets( - max_length: int = 34, - min_overlap: float = 0, - max_overlap: float = 0.33, - num_train: int = 10000, - num_test: int = 1000, -) -> None: - """Creates a training an validation dataset of Emnist lines.""" - num_samples = [num_train, num_test] - for num, train in zip(num_samples, [True, False]): - emnist_lines = EmnistLinesDataset( - train=train, - max_length=max_length, - min_overlap=min_overlap, - max_overlap=max_overlap, - num_samples=num, - ) - emnist_lines.load_or_generate_data() - - -if __name__ == "__main__": - create_datasets() |