diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-09-30 23:05:47 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-09-30 23:05:47 +0200 |
commit | e653bb1ebc6b7fb2e605eff8c64d6402edd38473 (patch) | |
tree | 9f210c7a130a5da9871786f52f8ce969d454d7f5 /text_recognizer | |
parent | f65b8a48763a6163083b84ddc7a65d33c091adf7 (diff) |
Refactor residual block
Diffstat (limited to 'text_recognizer')
-rw-r--r-- | text_recognizer/networks/vqvae/residual.py | 35 |
1 files changed, 14 insertions, 21 deletions
diff --git a/text_recognizer/networks/vqvae/residual.py b/text_recognizer/networks/vqvae/residual.py index 46b091d..bdff9eb 100644 --- a/text_recognizer/networks/vqvae/residual.py +++ b/text_recognizer/networks/vqvae/residual.py @@ -3,59 +3,52 @@ import attr from torch import nn from torch import Tensor +from text_recognizer.networks.util import activation_function from text_recognizer.networks.vqvae.norm import Normalize @attr.s(eq=False) class Residual(nn.Module): in_channels: int = attr.ib() - out_channels: int = attr.ib() - dropout_rate: float = attr.ib(default=0.0) + residual_channels: int = attr.ib() use_norm: bool = attr.ib(default=False) + activation: str = attr.ib(default="relu") def __attrs_post_init__(self) -> None: """Post init configuration.""" super().__init__() self.block = self._build_res_block() - if self.in_channels != self.out_channels: - self.conv_shortcut = nn.Conv2d( - in_channels=self.in_channels, - out_channels=self.out_channels, - kernel_size=3, - stride=1, - padding=1, - ) - else: - self.conv_shortcut = None def _build_res_block(self) -> nn.Sequential: """Build residual block.""" block = [] + activation_fn = activation_function(activation=self.activation) + if self.use_norm: block.append(Normalize(num_channels=self.in_channels)) + block += [ - nn.Mish(), + activation_fn, nn.Conv2d( self.in_channels, - self.out_channels, + self.residual_channels, kernel_size=3, padding=1, bias=False, ), ] - if self.dropout_rate: - block += [nn.Dropout(p=self.dropout_rate)] if self.use_norm: - block.append(Normalize(num_channels=self.out_channels)) + block.append(Normalize(num_channels=self.residual_channels)) block += [ - nn.Mish(), - nn.Conv2d(self.out_channels, self.out_channels, kernel_size=1, bias=False), + activation_fn, + nn.Conv2d( + self.residual_channels, self.in_channels, kernel_size=1, bias=False + ), ] return nn.Sequential(*block) def forward(self, x: Tensor) -> Tensor: """Apply the residual forward pass.""" - residual = self.conv_shortcut(x) if self.conv_shortcut is not None else x - return residual + self.block(x) + return x + self.block(x) |