diff options
| -rw-r--r-- | text_recognizer/models/transformer.py | 18 | ||||
| -rw-r--r-- | text_recognizer/models/vq_transformer.py | 22 | 
2 files changed, 20 insertions, 20 deletions
diff --git a/text_recognizer/models/transformer.py b/text_recognizer/models/transformer.py index 75f7523..50bf73d 100644 --- a/text_recognizer/models/transformer.py +++ b/text_recognizer/models/transformer.py @@ -52,16 +52,16 @@ class TransformerLitModel(BaseLitModel):          data, targets = batch          # Compute the loss. -        logits = self.network(data, targets[:-1]) -        loss = self.loss_fn(logits, targets[1:]) +        logits = self.network(data, targets[:, :-1]) +        loss = self.loss_fn(logits, targets[:, 1:])          self.log("val/loss", loss, prog_bar=True)          # Get the token prediction. -        pred = self(data) -        self.val_cer(pred, targets) -        self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True) -        self.test_acc(pred, targets) -        self.log("val/acc", self.test_acc, on_step=False, on_epoch=True) +        # pred = self(data) +        # self.val_cer(pred, targets) +        # self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True) +        # self.test_acc(pred, targets) +        # self.log("val/acc", self.test_acc, on_step=False, on_epoch=True)      def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:          """Test step.""" @@ -98,8 +98,8 @@ class TransformerLitModel(BaseLitModel):          for Sy in range(1, self.max_output_len):              context = output[:, :Sy]  # (B, Sy) -            logits = self.network.decode(z, context)  # (B, Sy, C) -            tokens = torch.argmax(logits, dim=-1)  # (B, Sy) +            logits = self.network.decode(z, context)  # (B, C, Sy) +            tokens = torch.argmax(logits, dim=1)  # (B, Sy)              output[:, Sy : Sy + 1] = tokens[:, -1:]              # Early stopping of prediction loop if token is end or padding token. diff --git a/text_recognizer/models/vq_transformer.py b/text_recognizer/models/vq_transformer.py index a0d3892..339ce09 100644 --- a/text_recognizer/models/vq_transformer.py +++ b/text_recognizer/models/vq_transformer.py @@ -21,8 +21,8 @@ class VqTransformerLitModel(TransformerLitModel):      def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:          """Training step."""          data, targets = batch -        logits, commitment_loss = self.network(data, targets[:-1]) -        loss = self.loss_fn(logits, targets[1:]) + self.alpha * commitment_loss +        logits, commitment_loss = self.network(data, targets[:, :-1]) +        loss = self.loss_fn(logits, targets[:, 1:]) + self.alpha * commitment_loss          self.log("train/loss", loss)          self.log("train/commitment_loss", commitment_loss)          return loss @@ -32,17 +32,17 @@ class VqTransformerLitModel(TransformerLitModel):          data, targets = batch          # Compute the loss. -        logits, commitment_loss = self.network(data, targets[:-1]) -        loss = self.loss_fn(logits, targets[1:]) + self.alpha * commitment_loss +        logits, commitment_loss = self.network(data, targets[:, :-1]) +        loss = self.loss_fn(logits, targets[:, 1:]) + self.alpha * commitment_loss          self.log("val/loss", loss, prog_bar=True)          self.log("val/commitment_loss", commitment_loss)          # Get the token prediction. -        pred = self(data) -        self.val_cer(pred, targets) -        self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True) -        self.test_acc(pred, targets) -        self.log("val/acc", self.test_acc, on_step=False, on_epoch=True) +        # pred = self(data) +        # self.val_cer(pred, targets) +        # self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True) +        # self.test_acc(pred, targets) +        # self.log("val/acc", self.test_acc, on_step=False, on_epoch=True)      def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:          """Test step.""" @@ -79,8 +79,8 @@ class VqTransformerLitModel(TransformerLitModel):          for Sy in range(1, self.max_output_len):              context = output[:, :Sy]  # (B, Sy) -            logits = self.network.decode(z, context)  # (B, Sy, C) -            tokens = torch.argmax(logits, dim=-1)  # (B, Sy) +            logits = self.network.decode(z, context)  # (B, C, Sy) +            tokens = torch.argmax(logits, dim=1)  # (B, Sy)              output[:, Sy : Sy + 1] = tokens[:, -1:]              # Early stopping of prediction loop if token is end or padding token.  |