summaryrefslogtreecommitdiff
path: root/notebooks/04-efficientnet-transformer.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'notebooks/04-efficientnet-transformer.ipynb')
-rw-r--r--notebooks/04-efficientnet-transformer.ipynb213
1 files changed, 198 insertions, 15 deletions
diff --git a/notebooks/04-efficientnet-transformer.ipynb b/notebooks/04-efficientnet-transformer.ipynb
index 145fe78..4a6fd64 100644
--- a/notebooks/04-efficientnet-transformer.ipynb
+++ b/notebooks/04-efficientnet-transformer.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"id": "7c02ae76-b540-4b16-9492-e9210b3b9249",
"metadata": {},
"outputs": [],
@@ -14,6 +14,7 @@
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
+ "import torch\n",
"import numpy as np\n",
"from omegaconf import OmegaConf\n",
"\n",
@@ -28,7 +29,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"id": "ccdb6dde-47e5-429a-88f2-0764fb7e259a",
"metadata": {},
"outputs": [],
@@ -40,17 +41,17 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"id": "3cf50475-39f2-4642-a7d1-5bcbc0a036f7",
"metadata": {},
"outputs": [],
"source": [
- "path = \"../training/conf/experiment/cnn_htr_char_lines.yaml\""
+ "path = \"../training/conf/experiment/conv_transformer_paragraphs.yaml\""
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 86,
"id": "e52ecb01-c975-4e55-925d-1182c7aea473",
"metadata": {},
"outputs": [],
@@ -61,17 +62,28 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 87,
"id": "f939aa37-7b1d-45cc-885c-323c4540bda1",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'dim': 192, 'num_heads': 4, 'dim_head': 64, 'dropout_rate': 0.05, '_target_': 'text_recognizer.networks.transformer.attention.Attention', 'causal': False}"
+ ]
+ },
+ "execution_count": 87,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "cfg"
+ "cfg.network.decoder.cross_attn"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 88,
"id": "aaeab329-aeb0-4a1b-aa35-5a2aab81b1d0",
"metadata": {},
"outputs": [],
@@ -81,7 +93,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 89,
"id": "618b997c-e6a6-4487-b70c-9d260cb556d3",
"metadata": {},
"outputs": [],
@@ -91,18 +103,189 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "id": "25759b7b-8deb-4163-b75d-a1357c9fe88f",
+ "execution_count": 91,
+ "id": "66118c10-2e59-469f-99d6-ddea4bfd0d73",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "====================================================================================================\n",
+ "Layer (type:depth-idx) Output Shape Param #\n",
+ "====================================================================================================\n",
+ "ConvTransformer -- --\n",
+ "├─EfficientNet: 1 -- --\n",
+ "│ └─ModuleList: 2-1 -- --\n",
+ "├─Decoder: 1 -- --\n",
+ "│ └─ModuleList: 2-2 -- --\n",
+ "│ │ └─ModuleList: 3-1 -- --\n",
+ "│ │ └─ModuleList: 3-2 -- --\n",
+ "│ │ └─ModuleList: 3-3 -- --\n",
+ "│ │ └─ModuleList: 3-4 -- --\n",
+ "│ │ └─ModuleList: 3-5 -- --\n",
+ "│ │ └─ModuleList: 3-6 -- --\n",
+ "│ │ └─ModuleList: 3-7 -- --\n",
+ "│ │ └─ModuleList: 3-8 -- --\n",
+ "│ │ └─ModuleList: 3-9 -- --\n",
+ "├─EfficientNet: 1-1 [2, 1280, 18, 20] --\n",
+ "│ └─Sequential: 2-3 [2, 32, 288, 320] --\n",
+ "│ │ └─ZeroPad2d: 3-10 [2, 1, 577, 641] --\n",
+ "│ │ └─Conv2d: 3-11 [2, 32, 288, 320] 288\n",
+ "│ │ └─BatchNorm2d: 3-12 [2, 32, 288, 320] 64\n",
+ "│ │ └─Mish: 3-13 [2, 32, 288, 320] --\n",
+ "│ └─ModuleList: 2-1 -- --\n",
+ "│ │ └─MBConvBlock: 3-14 [2, 16, 288, 320] --\n",
+ "│ │ │ └─Sequential: 4-1 [2, 32, 288, 320] 352\n",
+ "│ │ │ └─Sequential: 4-2 [2, 32, 288, 320] 552\n",
+ "│ │ │ └─Sequential: 4-3 [2, 16, 288, 320] 544\n",
+ "│ │ └─MBConvBlock: 3-15 [2, 24, 144, 160] --\n",
+ "│ │ │ └─Sequential: 4-4 [2, 96, 288, 320] 1,728\n",
+ "│ │ │ └─Sequential: 4-5 [2, 96, 144, 160] 1,056\n",
+ "│ │ │ └─Sequential: 4-6 [2, 96, 144, 160] 4,728\n",
+ "│ │ │ └─Sequential: 4-7 [2, 24, 144, 160] 2,352\n",
+ "│ │ └─MBConvBlock: 3-16 [2, 24, 144, 160] --\n",
+ "│ │ │ └─Sequential: 4-8 [2, 144, 144, 160] 3,744\n",
+ "│ │ │ └─Sequential: 4-9 [2, 144, 144, 160] 1,584\n",
+ "│ │ │ └─Sequential: 4-10 [2, 144, 144, 160] 10,548\n",
+ "│ │ │ └─Sequential: 4-11 [2, 24, 144, 160] 3,504\n",
+ "│ │ └─MBConvBlock: 3-17 [2, 40, 72, 80] --\n",
+ "│ │ │ └─Sequential: 4-12 [2, 144, 144, 160] 3,744\n",
+ "│ │ │ └─Sequential: 4-13 [2, 144, 72, 80] 3,888\n",
+ "│ │ │ └─Sequential: 4-14 [2, 144, 72, 80] 10,548\n",
+ "│ │ │ └─Sequential: 4-15 [2, 40, 72, 80] 5,840\n",
+ "│ │ └─MBConvBlock: 3-18 [2, 40, 72, 80] --\n",
+ "│ │ │ └─Sequential: 4-16 [2, 240, 72, 80] 10,080\n",
+ "│ │ │ └─Sequential: 4-17 [2, 240, 72, 80] 6,480\n",
+ "│ │ │ └─Sequential: 4-18 [2, 240, 72, 80] 29,100\n",
+ "│ │ │ └─Sequential: 4-19 [2, 40, 72, 80] 9,680\n",
+ "│ │ └─MBConvBlock: 3-19 [2, 80, 36, 40] --\n",
+ "│ │ │ └─Sequential: 4-20 [2, 240, 72, 80] 10,080\n",
+ "│ │ │ └─Sequential: 4-21 [2, 240, 36, 40] 2,640\n",
+ "│ │ │ └─Sequential: 4-22 [2, 240, 36, 40] 29,100\n",
+ "│ │ │ └─Sequential: 4-23 [2, 80, 36, 40] 19,360\n",
+ "│ │ └─MBConvBlock: 3-20 [2, 80, 36, 40] --\n",
+ "│ │ │ └─Sequential: 4-24 [2, 480, 36, 40] 39,360\n",
+ "│ │ │ └─Sequential: 4-25 [2, 480, 36, 40] 5,280\n",
+ "│ │ │ └─Sequential: 4-26 [2, 480, 36, 40] 115,800\n",
+ "│ │ │ └─Sequential: 4-27 [2, 80, 36, 40] 38,560\n",
+ "│ │ └─MBConvBlock: 3-21 [2, 80, 36, 40] --\n",
+ "│ │ │ └─Sequential: 4-28 [2, 480, 36, 40] 39,360\n",
+ "│ │ │ └─Sequential: 4-29 [2, 480, 36, 40] 5,280\n",
+ "│ │ │ └─Sequential: 4-30 [2, 480, 36, 40] 115,800\n",
+ "│ │ │ └─Sequential: 4-31 [2, 80, 36, 40] 38,560\n",
+ "│ │ └─MBConvBlock: 3-22 [2, 112, 36, 40] --\n",
+ "│ │ │ └─Sequential: 4-32 [2, 480, 36, 40] 39,360\n",
+ "│ │ │ └─Sequential: 4-33 [2, 480, 36, 40] 12,960\n",
+ "│ │ │ └─Sequential: 4-34 [2, 480, 36, 40] 115,800\n",
+ "│ │ │ └─Sequential: 4-35 [2, 112, 36, 40] 53,984\n",
+ "│ │ └─MBConvBlock: 3-23 [2, 112, 36, 40] --\n",
+ "│ │ │ └─Sequential: 4-36 [2, 672, 36, 40] 76,608\n",
+ "│ │ │ └─Sequential: 4-37 [2, 672, 36, 40] 18,144\n",
+ "│ │ │ └─Sequential: 4-38 [2, 672, 36, 40] 226,632\n",
+ "│ │ │ └─Sequential: 4-39 [2, 112, 36, 40] 75,488\n",
+ "│ │ └─MBConvBlock: 3-24 [2, 112, 36, 40] --\n",
+ "│ │ │ └─Sequential: 4-40 [2, 672, 36, 40] 76,608\n",
+ "│ │ │ └─Sequential: 4-41 [2, 672, 36, 40] 18,144\n",
+ "│ │ │ └─Sequential: 4-42 [2, 672, 36, 40] 226,632\n",
+ "│ │ │ └─Sequential: 4-43 [2, 112, 36, 40] 75,488\n",
+ "│ │ └─MBConvBlock: 3-25 [2, 192, 18, 20] --\n",
+ "│ │ │ └─Sequential: 4-44 [2, 672, 36, 40] 76,608\n",
+ "│ │ │ └─Sequential: 4-45 [2, 672, 18, 20] 18,144\n",
+ "│ │ │ └─Sequential: 4-46 [2, 672, 18, 20] 226,632\n",
+ "│ │ │ └─Sequential: 4-47 [2, 192, 18, 20] 129,408\n",
+ "│ │ └─MBConvBlock: 3-26 [2, 192, 18, 20] --\n",
+ "│ │ │ └─Sequential: 4-48 [2, 1152, 18, 20] 223,488\n",
+ "│ │ │ └─Sequential: 4-49 [2, 1152, 18, 20] 31,104\n",
+ "│ │ │ └─Sequential: 4-50 [2, 1152, 18, 20] 664,992\n",
+ "│ │ │ └─Sequential: 4-51 [2, 192, 18, 20] 221,568\n",
+ "│ │ └─MBConvBlock: 3-27 [2, 192, 18, 20] --\n",
+ "│ │ │ └─Sequential: 4-52 [2, 1152, 18, 20] 223,488\n",
+ "│ │ │ └─Sequential: 4-53 [2, 1152, 18, 20] 31,104\n",
+ "│ │ │ └─Sequential: 4-54 [2, 1152, 18, 20] 664,992\n",
+ "│ │ │ └─Sequential: 4-55 [2, 192, 18, 20] 221,568\n",
+ "│ │ └─MBConvBlock: 3-28 [2, 192, 18, 20] --\n",
+ "│ │ │ └─Sequential: 4-56 [2, 1152, 18, 20] 223,488\n",
+ "│ │ │ └─Sequential: 4-57 [2, 1152, 18, 20] 31,104\n",
+ "│ │ │ └─Sequential: 4-58 [2, 1152, 18, 20] 664,992\n",
+ "│ │ │ └─Sequential: 4-59 [2, 192, 18, 20] 221,568\n",
+ "│ │ └─MBConvBlock: 3-29 [2, 320, 18, 20] --\n",
+ "│ │ │ └─Sequential: 4-60 [2, 1152, 18, 20] 223,488\n",
+ "│ │ │ └─Sequential: 4-61 [2, 1152, 18, 20] 12,672\n",
+ "│ │ │ └─Sequential: 4-62 [2, 1152, 18, 20] 664,992\n",
+ "│ │ │ └─Sequential: 4-63 [2, 320, 18, 20] 369,280\n",
+ "│ └─Sequential: 2-4 [2, 1280, 18, 20] --\n",
+ "│ │ └─Conv2d: 3-30 [2, 1280, 18, 20] 409,600\n",
+ "│ │ └─BatchNorm2d: 3-31 [2, 1280, 18, 20] 2,560\n",
+ "├─Sequential: 1-2 [2, 192, 360] --\n",
+ "│ └─Conv2d: 2-5 [2, 192, 18, 20] 245,952\n",
+ "│ └─AxialPositionalEmbedding: 2-6 [2, 192, 18, 20] 7,296\n",
+ "│ └─Flatten: 2-7 [2, 192, 360] --\n",
+ "├─Embedding: 1-3 [1, 682, 192] 11,136\n",
+ "├─Decoder: 1-4 [2, 682, 192] --\n",
+ "│ └─ModuleList: 2-2 -- --\n",
+ "│ │ └─ModuleList: 3-1 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-64 [1, 682, 192] 1\n",
+ "│ │ │ └─LocalAttention: 4-65 [1, 682, 192] 196,800\n",
+ "│ │ │ └─Residual: 4-66 [1, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-2 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-67 [1, 682, 192] 1\n",
+ "│ │ │ └─Attention: 4-68 [2, 682, 192] 196,800\n",
+ "│ │ │ └─Residual: 4-69 [2, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-3 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-70 [2, 682, 192] 1\n",
+ "│ │ │ └─FeedForward: 4-71 [2, 682, 192] 444,096\n",
+ "│ │ │ └─Residual: 4-72 [2, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-4 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-73 [2, 682, 192] 1\n",
+ "│ │ │ └─LocalAttention: 4-74 [2, 682, 192] 196,800\n",
+ "│ │ │ └─Residual: 4-75 [2, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-5 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-76 [2, 682, 192] 1\n",
+ "│ │ │ └─Attention: 4-77 [2, 682, 192] 196,800\n",
+ "│ │ │ └─Residual: 4-78 [2, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-6 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-79 [2, 682, 192] 1\n",
+ "│ │ │ └─FeedForward: 4-80 [2, 682, 192] 444,096\n",
+ "│ │ │ └─Residual: 4-81 [2, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-7 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-82 [2, 682, 192] 1\n",
+ "│ │ │ └─Attention: 4-83 [2, 682, 192] 196,800\n",
+ "│ │ │ └─Residual: 4-84 [2, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-8 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-85 [2, 682, 192] 1\n",
+ "│ │ │ └─Attention: 4-86 [2, 682, 192] 196,800\n",
+ "│ │ │ └─Residual: 4-87 [2, 682, 192] --\n",
+ "│ │ └─ModuleList: 3-9 -- --\n",
+ "│ │ │ └─ScaleNorm: 4-88 [2, 682, 192] 1\n",
+ "│ │ │ └─FeedForward: 4-89 [2, 682, 192] 444,096\n",
+ "│ │ │ └─Residual: 4-90 [2, 682, 192] --\n",
+ "├─Linear: 1-5 [2, 682, 58] 11,194\n",
+ "====================================================================================================\n",
+ "Total params: 9,930,947\n",
+ "Trainable params: 9,930,947\n",
+ "Non-trainable params: 0\n",
+ "Total mult-adds (G): 11.45\n",
+ "====================================================================================================\n",
+ "Input size (MB): 2.95\n",
+ "Forward/backward pass size (MB): 2048.49\n",
+ "Params size (MB): 39.72\n",
+ "Estimated Total Size (MB): 2091.17\n",
+ "===================================================================================================="
+ ]
+ },
+ "execution_count": 91,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "summary(net, list(map(lambda x: list(x), cfg.summary)), device=\"cpu\", depth=1)"
+ "summary(net, ((2, 1, 576, 640), (1, 682)), device=\"cpu\", depth=4)"
]
},
{
"cell_type": "code",
"execution_count": null,
- "id": "4b1fe971-2a08-4010-855a-7971067cc559",
+ "id": "b13ac47c-322d-47d4-bcee-43e5341f74a7",
"metadata": {},
"outputs": [],
"source": []