diff options
Diffstat (limited to 'notebooks')
-rw-r--r-- | notebooks/00-testing-stuff-out.ipynb | 403 |
1 files changed, 285 insertions, 118 deletions
diff --git a/notebooks/00-testing-stuff-out.ipynb b/notebooks/00-testing-stuff-out.ipynb index d4840ef..e6cf099 100644 --- a/notebooks/00-testing-stuff-out.ipynb +++ b/notebooks/00-testing-stuff-out.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -62,31 +62,37 @@ "seed: 4711\n", "network:\n", " desc: Configuration of the PyTorch neural network.\n", - " type: ImageTransformer\n", + " type: VQVAE\n", " args:\n", " in_channels: 1\n", " channels:\n", - " - 128\n", - " - 64\n", " - 32\n", + " - 64\n", + " - 96\n", + " - 96\n", + " - 128\n", " kernel_sizes:\n", " - 4\n", " - 4\n", " - 4\n", + " - 4\n", + " - 4\n", " strides:\n", " - 2\n", " - 2\n", " - 2\n", - " num_residual_layers: 4\n", + " - 2\n", + " - 2\n", + " num_residual_layers: 2\n", " embedding_dim: 128\n", " num_embeddings: 1024\n", " upsampling: null\n", - " beta: 6.6\n", + " beta: 0.25\n", " activation: leaky_relu\n", - " dropout_rate: 0.25\n", + " dropout_rate: 0.1\n", "model:\n", " desc: Configuration of the PyTorch Lightning model.\n", - " type: LitTransformerModel\n", + " type: LitVQVAEModel\n", " args:\n", " optimizer:\n", " type: MADGRAD\n", @@ -96,18 +102,16 @@ " weight_decay: 0\n", " eps: 1.0e-06\n", " lr_scheduler:\n", - " type: OneCycle\n", + " type: OneCycleLR\n", " args:\n", " interval: step\n", " max_lr: 0.001\n", " three_phase: true\n", - " epochs: 512\n", - " steps_per_epoch: 1246\n", + " epochs: 1024\n", + " steps_per_epoch: 317\n", " criterion:\n", - " type: CrossEntropyLoss\n", + " type: MSELoss\n", " args:\n", - " weight: None\n", - " ignore_index: -100\n", " reduction: mean\n", " monitor: val_loss\n", " mapping: sentence_piece\n", @@ -115,7 +119,7 @@ " desc: Configuration of the training/test data.\n", " type: IAMExtendedParagraphs\n", " args:\n", - " batch_size: 16\n", + " batch_size: 64\n", " num_workers: 12\n", " train_fraction: 0.8\n", " augment: true\n", @@ -125,33 +129,21 @@ " monitor: val_loss\n", " mode: min\n", " save_last: true\n", - "- type: StochasticWeightAveraging\n", - " args:\n", - " swa_epoch_start: 0.8\n", - " swa_lrs: 0.05\n", - " annealing_epochs: 10\n", - " annealing_strategy: cos\n", - " device: null\n", "- type: LearningRateMonitor\n", " args:\n", " logging_interval: step\n", - "- type: EarlyStopping\n", - " args:\n", - " monitor: val_loss\n", - " mode: min\n", - " patience: 10\n", "trainer:\n", " desc: Configuration of the PyTorch Lightning Trainer.\n", " args:\n", - " stochastic_weight_avg: true\n", + " stochastic_weight_avg: false\n", " auto_scale_batch_size: binsearch\n", " gradient_clip_val: 0\n", " fast_dev_run: false\n", " gpus: 1\n", " precision: 16\n", - " max_epochs: 512\n", + " max_epochs: 1024\n", " terminate_on_nan: true\n", - " weights_summary: true\n", + " weights_summary: full\n", "load_checkpoint: null\n", "\n" ] @@ -163,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -172,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -181,7 +173,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -194,50 +186,44 @@ " (0): Conv2d(1, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (1): Dropout(p=0.25, inplace=False)\n", + " (1): Dropout(p=0.1, inplace=False)\n", " (2): Sequential(\n", " (0): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (3): Dropout(p=0.25, inplace=False)\n", + " (3): Dropout(p=0.1, inplace=False)\n", " (4): Sequential(\n", - " (0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (0): Conv2d(64, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (5): Dropout(p=0.25, inplace=False)\n", - " (6): _ResidualBlock(\n", - " (block): Sequential(\n", - " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (1): ReLU(inplace=True)\n", - " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " )\n", + " (5): Dropout(p=0.1, inplace=False)\n", + " (6): Sequential(\n", + " (0): Conv2d(96, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (7): _ResidualBlock(\n", - " (block): Sequential(\n", - " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (1): ReLU(inplace=True)\n", - " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " )\n", + " (7): Dropout(p=0.1, inplace=False)\n", + " (8): Sequential(\n", + " (0): Conv2d(96, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (8): _ResidualBlock(\n", + " (9): Dropout(p=0.1, inplace=False)\n", + " (10): _ResidualBlock(\n", " (block): Sequential(\n", " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (1): ReLU(inplace=True)\n", " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", + " (3): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (9): _ResidualBlock(\n", + " (11): _ResidualBlock(\n", " (block): Sequential(\n", " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (1): ReLU(inplace=True)\n", " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", + " (3): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (10): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))\n", + " (12): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))\n", " )\n", " (vector_quantizer): VectorQuantizer(\n", " (embedding): Embedding(1024, 128)\n", @@ -251,7 +237,7 @@ " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (1): ReLU(inplace=True)\n", " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", + " (3): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (2): _ResidualBlock(\n", @@ -259,39 +245,33 @@ " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (1): ReLU(inplace=True)\n", " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " )\n", - " )\n", - " (3): _ResidualBlock(\n", - " (block): Sequential(\n", - " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (1): ReLU(inplace=True)\n", - " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " )\n", - " )\n", - " (4): _ResidualBlock(\n", - " (block): Sequential(\n", - " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (1): ReLU(inplace=True)\n", - " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", + " (3): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " (upsampling_block): Sequential(\n", " (0): Sequential(\n", - " (0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (0): ConvTranspose2d(128, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (1): Dropout(p=0.25, inplace=False)\n", + " (1): Dropout(p=0.1, inplace=False)\n", " (2): Sequential(\n", + " (0): ConvTranspose2d(96, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " )\n", + " (3): Dropout(p=0.1, inplace=False)\n", + " (4): Sequential(\n", + " (0): ConvTranspose2d(96, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " )\n", + " (5): Dropout(p=0.1, inplace=False)\n", + " (6): Sequential(\n", " (0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " (4): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", - " (5): Tanh()\n", + " (7): Dropout(p=0.1, inplace=False)\n", + " (8): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (9): Tanh()\n", " )\n", " (decoder): Sequential(\n", " (0): Sequential(\n", @@ -301,7 +281,7 @@ " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (1): ReLU(inplace=True)\n", " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", + " (3): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (2): _ResidualBlock(\n", @@ -309,46 +289,40 @@ " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (1): ReLU(inplace=True)\n", " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " )\n", - " )\n", - " (3): _ResidualBlock(\n", - " (block): Sequential(\n", - " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (1): ReLU(inplace=True)\n", - " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " )\n", - " )\n", - " (4): _ResidualBlock(\n", - " (block): Sequential(\n", - " (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", - " (1): ReLU(inplace=True)\n", - " (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", - " (3): Dropout(p=0.25, inplace=False)\n", + " (3): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " (1): Sequential(\n", " (0): Sequential(\n", - " (0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (0): ConvTranspose2d(128, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (1): Dropout(p=0.25, inplace=False)\n", + " (1): Dropout(p=0.1, inplace=False)\n", " (2): Sequential(\n", + " (0): ConvTranspose2d(96, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " )\n", + " (3): Dropout(p=0.1, inplace=False)\n", + " (4): Sequential(\n", + " (0): ConvTranspose2d(96, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", + " )\n", + " (5): Dropout(p=0.1, inplace=False)\n", + " (6): Sequential(\n", " (0): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", " (1): LeakyReLU(negative_slope=0.01, inplace=True)\n", " )\n", - " (3): Dropout(p=0.25, inplace=False)\n", - " (4): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", - " (5): Tanh()\n", + " (7): Dropout(p=0.1, inplace=False)\n", + " (8): ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))\n", + " (9): Tanh()\n", " )\n", " )\n", " )\n", ")" ] }, - "execution_count": 79, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -359,36 +333,229 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "datum = torch.randn([2, 1, 576, 640])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "proj = nn.Conv2d(1, 32, kernel_size=16, stride=16)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "x = proj(datum)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "tensor([1.])" + "torch.Size([2, 32, 36, 40])" ] }, - "execution_count": 80, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "torch.Tensor([1])" + "x.shape" ] }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ - "datum = torch.randn([2, 1, 576, 640])" + "xx = x.flatten(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([2, 32, 1440])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xx.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "xxx = xx.transpose(1,2)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([2, 1440, 32])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xxx.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from einops import rearrange" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "xxxx = rearrange(x, \"b c h w -> b ( h w ) c\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([2, 1440, 32])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xxxx.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + " B, N, C = x.shape\n", + " H, W = size\n", + " assert N == 1 + H * W\n", + "\n", + " # Extract CLS token and image tokens.\n", + " cls_token, img_tokens = x[:, :1], x[:, 1:] # Shape: [B, 1, C], [B, H*W, C].\n", + " \n", + " # Depthwise convolution.\n", + " feat = img_tokens.transpose(1, 2).view(B, C, H, W)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([2, 32, 36, 40])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xxx.transpose(1, 2).view(2, 32, 36, 40).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "72.0" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "576 / 8" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "80.0" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "640 / 8" ] }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -397,7 +564,7 @@ "torch.Size([2, 1, 576, 640])" ] }, - "execution_count": 82, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -408,16 +575,16 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "torch.Size([2, 128, 72, 80])" + "torch.Size([2, 128, 18, 20])" ] }, - "execution_count": 85, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } |