diff options
Diffstat (limited to 'src/text_recognizer/models/transformer_encoder_model.py')
-rw-r--r-- | src/text_recognizer/models/transformer_encoder_model.py | 111 |
1 files changed, 0 insertions, 111 deletions
diff --git a/src/text_recognizer/models/transformer_encoder_model.py b/src/text_recognizer/models/transformer_encoder_model.py deleted file mode 100644 index e35e298..0000000 --- a/src/text_recognizer/models/transformer_encoder_model.py +++ /dev/null @@ -1,111 +0,0 @@ -"""Defines the CNN-Transformer class.""" -from typing import Callable, Dict, List, Optional, Tuple, Type, Union - -import numpy as np -import torch -from torch import nn -from torch import Tensor -from torch.utils.data import Dataset -from torchvision.transforms import ToTensor - -from text_recognizer.datasets import EmnistMapper -from text_recognizer.models.base import Model - - -class TransformerEncoderModel(Model): - """A class for only using the encoder part in the sequence modelling.""" - - def __init__( - self, - network_fn: Type[nn.Module], - dataset: Type[Dataset], - network_args: Optional[Dict] = None, - dataset_args: Optional[Dict] = None, - metrics: Optional[Dict] = None, - criterion: Optional[Callable] = None, - criterion_args: Optional[Dict] = None, - optimizer: Optional[Callable] = None, - optimizer_args: Optional[Dict] = None, - lr_scheduler: Optional[Callable] = None, - lr_scheduler_args: Optional[Dict] = None, - swa_args: Optional[Dict] = None, - device: Optional[str] = None, - ) -> None: - super().__init__( - network_fn, - dataset, - network_args, - dataset_args, - metrics, - criterion, - criterion_args, - optimizer, - optimizer_args, - lr_scheduler, - lr_scheduler_args, - swa_args, - device, - ) - # self.init_token = dataset_args["args"]["init_token"] - self.pad_token = dataset_args["args"]["pad_token"] - self.eos_token = dataset_args["args"]["eos_token"] - if network_args is not None: - self.max_len = network_args["max_len"] - else: - self.max_len = 128 - - if self._mapper is None: - self._mapper = EmnistMapper( - # init_token=self.init_token, - pad_token=self.pad_token, - eos_token=self.eos_token, - ) - self.tensor_transform = ToTensor() - - self.softmax = nn.Softmax(dim=2) - - @torch.no_grad() - def _generate_sentence(self, image: Tensor) -> Tuple[List, float]: - logits = self.network(image) - # Convert logits to probabilities. - probs = self.softmax(logits).squeeze(0) - - confidence, pred_tokens = probs.max(1) - pred_tokens = pred_tokens - - eos_index = torch.nonzero( - pred_tokens == self._mapper(self.eos_token), as_tuple=False, - ) - - eos_index = eos_index[0].item() if eos_index.nelement() else -1 - - predicted_characters = "".join( - [self.mapper(x) for x in pred_tokens[:eos_index].tolist()] - ) - - confidence = np.min(confidence.tolist()) - - return predicted_characters, confidence - - @torch.no_grad() - def predict_on_image(self, image: Union[np.ndarray, Tensor]) -> Tuple[str, float]: - """Predict on a single input.""" - self.eval() - - if image.dtype == np.uint8: - # Converts an image with range [0, 255] with to Pytorch Tensor with range [0, 1]. - image = self.tensor_transform(image) - - # Rescale image between 0 and 1. - if image.dtype == torch.uint8: - # If the image is an unscaled tensor. - image = image.type("torch.FloatTensor") / 255 - - # Put the image tensor on the device the model weights are on. - image = image.to(self.device) - - (predicted_characters, confidence_of_prediction,) = self._generate_sentence( - image - ) - - return predicted_characters, confidence_of_prediction |