diff options
Diffstat (limited to 'src/text_recognizer/networks/neural_machine_reader.py')
-rw-r--r-- | src/text_recognizer/networks/neural_machine_reader.py | 201 |
1 files changed, 0 insertions, 201 deletions
diff --git a/src/text_recognizer/networks/neural_machine_reader.py b/src/text_recognizer/networks/neural_machine_reader.py deleted file mode 100644 index 7f8c49b..0000000 --- a/src/text_recognizer/networks/neural_machine_reader.py +++ /dev/null @@ -1,201 +0,0 @@ -"""Sequence to sequence network with RNN cells.""" -# from typing import Dict, Optional, Tuple - -# from einops import rearrange -# from einops.layers.torch import Rearrange -# import torch -# from torch import nn -# from torch import Tensor - -# from text_recognizer.networks.util import configure_backbone - - -# class Encoder(nn.Module): -# def __init__( -# self, -# embedding_dim: int, -# encoder_dim: int, -# decoder_dim: int, -# dropout_rate: float = 0.1, -# ) -> None: -# super().__init__() -# self.rnn = nn.GRU( -# input_size=embedding_dim, hidden_size=encoder_dim, bidirectional=True -# ) -# self.fc = nn.Sequential( -# nn.Linear(in_features=2 * encoder_dim, out_features=decoder_dim), nn.Tanh() -# ) -# self.dropout = nn.Dropout(p=dropout_rate) - -# def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: -# """Encodes a sequence of tensors with a bidirectional GRU. - -# Args: -# x (Tensor): A input sequence. - -# Shape: -# - x: :math:`(T, N, E)`. -# - output[0]: :math:`(T, N, 2 * E)`. -# - output[1]: :math:`(T, N, D)`. - -# where T is the sequence length, N is the batch size, E is the -# embedding/encoder dimension, and D is the decoder dimension. - -# Returns: -# Tuple[Tensor, Tensor]: The encoder output and the hidden state of the -# encoder. - -# """ - -# output, hidden = self.rnn(x) - -# # Get the hidden state from the forward and backward rnn. -# hidden_state = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1) - -# # Apply fully connected layer and tanh activation. -# hidden_state = self.fc(hidden_state) - -# return output, hidden_state - - -# class Attention(nn.Module): -# def __init__(self, encoder_dim: int, decoder_dim: int) -> None: -# super().__init__() -# self.atten = nn.Linear( -# in_features=2 * encoder_dim + decoder_dim, out_features=decoder_dim -# ) -# self.value = nn.Linear(in_features=decoder_dim, out_features=1, bias=False) - -# def forward(self, hidden_state: Tensor, encoder_outputs: Tensor) -> Tensor: -# """Short summary. - -# Args: -# hidden_state (Tensor): Description of parameter `h`. -# encoder_outputs (Tensor): Description of parameter `enc_out`. - -# Shape: -# - x: :math:`(T, N, E)`. -# - output[0]: :math:`(T, N, 2 * E)`. -# - output[1]: :math:`(T, N, D)`. - -# where T is the sequence length, N is the batch size, E is the -# embedding/encoder dimension, and D is the decoder dimension. - -# Returns: -# Tensor: Description of returned object. - -# """ -# t, b = enc_out.shape[:2] -# # repeat decoder hidden state src_len times -# hidden_state = hidden_state.unsqueeze(1).repeat(1, t, 1) - -# encoder_outputs = rearrange(encoder_outputs, "t b e2 -> b t e2") - -# # Calculate the energy between the decoders previous hidden state and the -# # encoders hidden states. -# energy = torch.tanh( -# self.attn(torch.cat((hidden_state, encoder_outputs), dim=2)) -# ) - -# attention = self.value(energy).squeeze(2) - -# # Apply softmax on the attention to squeeze it between 0 and 1. -# attention = F.softmax(attention, dim=1) - -# return attention - - -# class Decoder(nn.Module): -# def __init__( -# self, -# embedding_dim: int, -# encoder_dim: int, -# decoder_dim: int, -# output_dim: int, -# dropout_rate: float = 0.1, -# ) -> None: -# super().__init__() -# self.output_dim = output_dim -# self.embedding = nn.Embedding(output_dim, embedding_dim) -# self.attention = Attention(encoder_dim, decoder_dim) -# self.rnn = nn.GRU( -# input_size=2 * encoder_dim + embedding_dim, hidden_size=decoder_dim -# ) - -# self.head = nn.Linear( -# in_features=2 * encoder_dim + embedding_dim + decoder_dim, -# out_features=output_dim, -# ) -# self.dropout = nn.Dropout(p=dropout_rate) - -# def forward( -# self, trg: Tensor, hidden_state: Tensor, encoder_outputs: Tensor -# ) -> Tensor: -# # input = [batch size] -# # hidden = [batch size, dec hid dim] -# # encoder_outputs = [src len, batch size, enc hid dim * 2] -# trg = trg.unsqueeze(0) -# trg_embedded = self.dropout(self.embedding(trg)) - -# a = self.attention(hidden_state, encoder_outputs) - -# weighted = torch.bmm(a, encoder_outputs) - -# # Permutate the tensor. -# weighted = rearrange(weighted, "b a e2 -> a b e2") - -# rnn_input = torch.cat((trg_embedded, weighted), dim=2) - -# output, hidden = self.rnn(rnn_input, hidden.unsqueeze(0)) - -# # seq len, n layers and n directions will always be 1 in this decoder, therefore: -# # output = [1, batch size, dec hid dim] -# # hidden = [1, batch size, dec hid dim] -# # this also means that output == hidden -# assert (output == hidden).all() - -# trg_embedded = trg_embedded.squeeze(0) -# output = output.squeeze(0) -# weighted = weighted.squeeze(0) - -# logits = self.fc_out(torch.cat((output, weighted, trg_embedded), dim=1)) - -# # prediction = [batch size, output dim] - -# return logits, hidden.squeeze(0) - - -# class NeuralMachineReader(nn.Module): -# def __init__( -# self, -# embedding_dim: int, -# encoder_dim: int, -# decoder_dim: int, -# output_dim: int, -# backbone: Optional[str] = None, -# backbone_args: Optional[Dict] = None, -# adaptive_pool_dim: Tuple = (None, 1), -# dropout_rate: float = 0.1, -# teacher_forcing_ratio: float = 0.5, -# ) -> None: -# super().__init__() - -# self.backbone = configure_backbone(backbone, backbone_args) -# self.adaptive_pool = nn.AdaptiveAvgPool2d((adaptive_pool_dim)) - -# self.encoder = Encoder(embedding_dim, encoder_dim, decoder_dim, dropout_rate) -# self.decoder = Decoder( -# embedding_dim, encoder_dim, decoder_dim, output_dim, dropout_rate -# ) -# self.teacher_forcing_ratio = teacher_forcing_ratio - -# def extract_image_features(self, x: Tensor) -> Tensor: -# x = self.backbone(x) -# x = rearrange(x, "b c h w -> b w c h") -# x = self.adaptive_pool(x) -# x = x.squeeze(3) - -# def forward(self, x: Tensor, trg: Tensor) -> Tensor: -# # x = [batch size, height, width] -# # trg = [trg len, batch size] -# z = self.extract_image_features(x) |