summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/vision_transformer.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/networks/vision_transformer.py')
-rw-r--r--src/text_recognizer/networks/vision_transformer.py159
1 files changed, 159 insertions, 0 deletions
diff --git a/src/text_recognizer/networks/vision_transformer.py b/src/text_recognizer/networks/vision_transformer.py
new file mode 100644
index 0000000..f227954
--- /dev/null
+++ b/src/text_recognizer/networks/vision_transformer.py
@@ -0,0 +1,159 @@
+"""VisionTransformer module.
+
+Splits each image into patches and feeds them to a transformer.
+
+"""
+
+from typing import Dict, Optional, Tuple, Type
+
+from einops import rearrange, reduce
+from einops.layers.torch import Rearrange
+from loguru import logger
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.transformer import PositionalEncoding, Transformer
+from text_recognizer.networks.util import configure_backbone
+
+
+class VisionTransformer(nn.Module):
+ """Linear projection+Transfomer for image to sequence prediction, sort of based on the ideas from ViT."""
+
+ def __init__(
+ self,
+ num_encoder_layers: int,
+ num_decoder_layers: int,
+ hidden_dim: int,
+ vocab_size: int,
+ num_heads: int,
+ max_len: int,
+ expansion_dim: int,
+ dropout_rate: float,
+ trg_pad_index: int,
+ mlp_dim: Optional[int] = None,
+ patch_size: Tuple[int, int] = (28, 28),
+ stride: Tuple[int, int] = (1, 14),
+ activation: str = "gelu",
+ backbone: Optional[str] = None,
+ backbone_args: Optional[Dict] = None,
+ ) -> None:
+ super().__init__()
+
+ self.patch_size = patch_size
+ self.stride = stride
+ self.trg_pad_index = trg_pad_index
+ self.slidning_window = self._configure_sliding_window()
+ self.character_embedding = nn.Embedding(vocab_size, hidden_dim)
+ self.position_encoding = PositionalEncoding(hidden_dim, dropout_rate, max_len)
+ self.mlp_dim = mlp_dim
+
+ self.use_backbone = False
+ if backbone is None:
+ self.linear_projection = nn.Linear(
+ self.patch_size[0] * self.patch_size[1], hidden_dim
+ )
+ else:
+ self.backbone = configure_backbone(backbone, backbone_args)
+ if mlp_dim:
+ self.mlp = nn.Linear(mlp_dim, hidden_dim)
+ self.use_backbone = True
+
+ self.transformer = Transformer(
+ num_encoder_layers,
+ num_decoder_layers,
+ hidden_dim,
+ num_heads,
+ expansion_dim,
+ dropout_rate,
+ activation,
+ )
+
+ self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),)
+
+ def _configure_sliding_window(self) -> nn.Sequential:
+ return nn.Sequential(
+ nn.Unfold(kernel_size=self.patch_size, stride=self.stride),
+ Rearrange(
+ "b (c h w) t -> b t c h w",
+ h=self.patch_size[0],
+ w=self.patch_size[1],
+ c=1,
+ ),
+ )
+
+ def _create_trg_mask(self, trg: Tensor) -> Tensor:
+ # Move this outside the transformer.
+ trg_pad_mask = (trg != self.trg_pad_index)[:, None, None]
+ trg_len = trg.shape[1]
+ trg_sub_mask = torch.tril(
+ torch.ones((trg_len, trg_len), device=trg.device)
+ ).bool()
+ trg_mask = trg_pad_mask & trg_sub_mask
+ return trg_mask
+
+ def encoder(self, src: Tensor) -> Tensor:
+ """Forward pass with the encoder of the transformer."""
+ return self.transformer.encoder(src)
+
+ def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor:
+ """Forward pass with the decoder of the transformer + classification head."""
+ return self.head(
+ self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask)
+ )
+
+ def _backbone(self, x: Tensor) -> Tensor:
+ b, t = x.shape[:2]
+ if self.use_backbone:
+ x = rearrange(x, "b t c h w -> (b t) c h w", b=b, t=t)
+ x = self.backbone(x)
+ if self.mlp_dim:
+ x = rearrange(x, "(b t) c h w -> b t (c h w)", b=b, t=t)
+ x = self.mlp(x)
+ else:
+ x = rearrange(x, "(b t) h -> b t h", b=b, t=t)
+ else:
+ x = rearrange(x, "b t c h w -> b t (c h w)", b=b, t=t)
+ x = self.linear_projection(x)
+ return x
+
+ def preprocess_input(self, src: Tensor) -> Tensor:
+ """Encodes src with a backbone network and a positional encoding.
+
+ Args:
+ src (Tensor): Input tensor.
+
+ Returns:
+ Tensor: A input src to the transformer.
+
+ """
+ # If batch dimenstion is missing, it needs to be added.
+ if len(src.shape) < 4:
+ src = src[(None,) * (4 - len(src.shape))]
+ src = self.slidning_window(src) # .squeeze(-2)
+ src = self._backbone(src)
+ src = self.position_encoding(src)
+ return src
+
+ def preprocess_target(self, trg: Tensor) -> Tuple[Tensor, Tensor]:
+ """Encodes target tensor with embedding and postion.
+
+ Args:
+ trg (Tensor): Target tensor.
+
+ Returns:
+ Tuple[Tensor, Tensor]: Encoded target tensor and target mask.
+
+ """
+ trg_mask = self._create_trg_mask(trg)
+ trg = self.character_embedding(trg.long())
+ trg = self.position_encoding(trg)
+ return trg, trg_mask
+
+ def forward(self, x: Tensor, trg: Tensor) -> Tensor:
+ """Forward pass with vision transfomer."""
+ src = self.preprocess_input(x)
+ trg, trg_mask = self.preprocess_target(trg)
+ out = self.transformer(src, trg, trg_mask=trg_mask)
+ logits = self.head(out)
+ return logits