summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/vq_transformer.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/networks/vq_transformer.py')
-rw-r--r--src/text_recognizer/networks/vq_transformer.py150
1 files changed, 0 insertions, 150 deletions
diff --git a/src/text_recognizer/networks/vq_transformer.py b/src/text_recognizer/networks/vq_transformer.py
deleted file mode 100644
index c673d96..0000000
--- a/src/text_recognizer/networks/vq_transformer.py
+++ /dev/null
@@ -1,150 +0,0 @@
-"""A VQ-Transformer for image to text recognition."""
-from typing import Dict, Optional, Tuple
-
-from einops import rearrange, repeat
-import torch
-from torch import nn
-from torch import Tensor
-
-from text_recognizer.networks.transformer import PositionalEncoding, Transformer
-from text_recognizer.networks.util import activation_function
-from text_recognizer.networks.util import configure_backbone
-from text_recognizer.networks.vqvae.encoder import _ResidualBlock
-
-
-class VQTransformer(nn.Module):
- """VQ+Transfomer for image to character sequence prediction."""
-
- def __init__(
- self,
- num_encoder_layers: int,
- num_decoder_layers: int,
- hidden_dim: int,
- vocab_size: int,
- num_heads: int,
- adaptive_pool_dim: Tuple,
- expansion_dim: int,
- dropout_rate: float,
- trg_pad_index: int,
- max_len: int,
- backbone: str,
- backbone_args: Optional[Dict] = None,
- activation: str = "gelu",
- ) -> None:
- super().__init__()
-
- # Configure vector quantized backbone.
- self.backbone = configure_backbone(backbone, backbone_args)
- self.conv = nn.Sequential(
- nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=2),
- nn.ReLU(inplace=True),
- )
-
- # Configure embeddings for Transformer network.
- self.trg_pad_index = trg_pad_index
- self.vocab_size = vocab_size
- self.character_embedding = nn.Embedding(self.vocab_size, hidden_dim)
- self.src_position_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim))
- self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate)
- nn.init.normal_(self.character_embedding.weight, std=0.02)
-
- self.adaptive_pool = (
- nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None
- )
-
- self.transformer = Transformer(
- num_encoder_layers,
- num_decoder_layers,
- hidden_dim,
- num_heads,
- expansion_dim,
- dropout_rate,
- activation,
- )
-
- self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),)
-
- def _create_trg_mask(self, trg: Tensor) -> Tensor:
- # Move this outside the transformer.
- trg_pad_mask = (trg != self.trg_pad_index)[:, None, None]
- trg_len = trg.shape[1]
- trg_sub_mask = torch.tril(
- torch.ones((trg_len, trg_len), device=trg.device)
- ).bool()
- trg_mask = trg_pad_mask & trg_sub_mask
- return trg_mask
-
- def encoder(self, src: Tensor) -> Tensor:
- """Forward pass with the encoder of the transformer."""
- return self.transformer.encoder(src)
-
- def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor:
- """Forward pass with the decoder of the transformer + classification head."""
- return self.head(
- self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask)
- )
-
- def extract_image_features(self, src: Tensor) -> Tuple[Tensor, Tensor]:
- """Extracts image features with a backbone neural network.
-
- It seem like the winning idea was to swap channels and width dimension and collapse
- the height dimension. The transformer is learning like a baby with this implementation!!! :D
- Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D
-
- Args:
- src (Tensor): Input tensor.
-
- Returns:
- Tensor: The input src to the transformer and the vq loss.
-
- """
- # If batch dimension is missing, it needs to be added.
- if len(src.shape) < 4:
- src = src[(None,) * (4 - len(src.shape))]
- src, vq_loss = self.backbone.encode(src)
- # src = self.backbone.decoder.res_block(src)
- src = self.conv(src)
-
- if self.adaptive_pool is not None:
- src = rearrange(src, "b c h w -> b w c h")
- src = self.adaptive_pool(src)
- src = src.squeeze(3)
- else:
- src = rearrange(src, "b c h w -> b (w h) c")
-
- b, t, _ = src.shape
-
- src += self.src_position_embedding[:, :t]
-
- return src, vq_loss
-
- def target_embedding(self, trg: Tensor) -> Tensor:
- """Encodes target tensor with embedding and postion.
-
- Args:
- trg (Tensor): Target tensor.
-
- Returns:
- Tensor: Encoded target tensor.
-
- """
- trg = self.character_embedding(trg.long())
- trg = self.trg_position_encoding(trg)
- return trg
-
- def decode_image_features(
- self, image_features: Tensor, trg: Optional[Tensor] = None
- ) -> Tensor:
- """Takes images features from the backbone and decodes them with the transformer."""
- trg_mask = self._create_trg_mask(trg)
- trg = self.target_embedding(trg)
- out = self.transformer(image_features, trg, trg_mask=trg_mask)
-
- logits = self.head(out)
- return logits
-
- def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor:
- """Forward pass with CNN transfomer."""
- image_features, vq_loss = self.extract_image_features(x)
- logits = self.decode_image_features(image_features, trg)
- return logits, vq_loss