summaryrefslogtreecommitdiff
path: root/text_recognizer/model
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/model')
-rw-r--r--text_recognizer/model/greedy_decoder.py53
1 files changed, 0 insertions, 53 deletions
diff --git a/text_recognizer/model/greedy_decoder.py b/text_recognizer/model/greedy_decoder.py
deleted file mode 100644
index 8d55a02..0000000
--- a/text_recognizer/model/greedy_decoder.py
+++ /dev/null
@@ -1,53 +0,0 @@
-"""Greedy decoder."""
-from typing import Type
-from text_recognizer.data.tokenizer import Tokenizer
-import torch
-from torch import nn, Tensor
-
-
-class GreedyDecoder:
- def __init__(
- self,
- network: Type[nn.Module],
- tokenizer: Tokenizer,
- max_output_len: int = 682,
- ) -> None:
- self.network = network
- self.start_index = tokenizer.start_index
- self.end_index = tokenizer.end_index
- self.pad_index = tokenizer.pad_index
- self.max_output_len = max_output_len
-
- def __call__(self, x: Tensor) -> Tensor:
- bsz = x.shape[0]
-
- # Encode image(s) to latent vectors.
- img_features = self.network.encode(x)
-
- # Create a placeholder matrix for storing outputs from the network
- indecies = (
- torch.ones((bsz, self.max_output_len), dtype=torch.long, device=x.device)
- * self.pad_index
- )
- indecies[:, 0] = self.start_index
-
- for i in range(1, self.max_output_len):
- tokens = indecies[:, :i] # (B, Sy)
- logits = self.network.decode(tokens, img_features) # [ B, N, C ]
- indecies_ = logits.argmax(dim=2) # [ B, N ]
- indecies[:, i] = indecies_[:, -1]
-
- # Early stopping of prediction loop if token is end or padding token.
- if (
- (indecies[:, i] == self.end_index) | (indecies[:, i] == self.pad_index)
- ).all():
- break
-
- # Set all tokens after end token to pad token.
- for i in range(1, self.max_output_len):
- idx = (indecies[:, i - 1] == self.end_index) | (
- indecies[:, i - 1] == self.pad_index
- )
- indecies[idx, i] = self.pad_index
-
- return indecies