summaryrefslogtreecommitdiff
path: root/text_recognizer/network
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/network')
-rw-r--r--text_recognizer/network/__init__.py1
-rw-r--r--text_recognizer/network/convnext/__init__.py7
-rw-r--r--text_recognizer/network/convnext/attention.py79
-rw-r--r--text_recognizer/network/convnext/convnext.py77
-rw-r--r--text_recognizer/network/convnext/downsample.py21
-rw-r--r--text_recognizer/network/convnext/norm.py18
-rw-r--r--text_recognizer/network/convnext/residual.py16
-rw-r--r--text_recognizer/network/transformer/__init__.py1
-rw-r--r--text_recognizer/network/transformer/attend.py94
-rw-r--r--text_recognizer/network/transformer/attention.py56
-rw-r--r--text_recognizer/network/transformer/decoder.py57
-rw-r--r--text_recognizer/network/transformer/embedding/__init__.py1
-rw-r--r--text_recognizer/network/transformer/embedding/absolute.py28
-rw-r--r--text_recognizer/network/transformer/embedding/l2_norm.py9
-rw-r--r--text_recognizer/network/transformer/embedding/sincos.py13
-rw-r--r--text_recognizer/network/transformer/embedding/token.py18
-rw-r--r--text_recognizer/network/transformer/encoder.py46
-rw-r--r--text_recognizer/network/transformer/ff.py22
-rw-r--r--text_recognizer/network/transformer/norm.py22
-rw-r--r--text_recognizer/network/vit.py76
20 files changed, 662 insertions, 0 deletions
diff --git a/text_recognizer/network/__init__.py b/text_recognizer/network/__init__.py
new file mode 100644
index 0000000..d9ef58b
--- /dev/null
+++ b/text_recognizer/network/__init__.py
@@ -0,0 +1 @@
+"""Network modules"""
diff --git a/text_recognizer/network/convnext/__init__.py b/text_recognizer/network/convnext/__init__.py
new file mode 100644
index 0000000..dcff3fc
--- /dev/null
+++ b/text_recognizer/network/convnext/__init__.py
@@ -0,0 +1,7 @@
+"""Convnext module."""
+from text_recognizer.network.convnext.attention import (
+ Attention,
+ FeedForward,
+ TransformerBlock,
+)
+from text_recognizer.network.convnext.convnext import ConvNext
diff --git a/text_recognizer/network/convnext/attention.py b/text_recognizer/network/convnext/attention.py
new file mode 100644
index 0000000..6bc9692
--- /dev/null
+++ b/text_recognizer/network/convnext/attention.py
@@ -0,0 +1,79 @@
+"""Convolution self attention block."""
+
+import torch.nn.functional as F
+from einops import rearrange
+from torch import Tensor, einsum, nn
+
+from text_recognizer.network.convnext.norm import LayerNorm
+from text_recognizer.network.convnext.residual import Residual
+
+
+def l2norm(t: Tensor) -> Tensor:
+ return F.normalize(t, dim=-1)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim: int, mult: int = 4) -> None:
+ super().__init__()
+ inner_dim = int(dim * mult)
+ self.fn = Residual(
+ nn.Sequential(
+ LayerNorm(dim),
+ nn.Conv2d(dim, inner_dim, 1, bias=False),
+ nn.GELU(),
+ LayerNorm(inner_dim),
+ nn.Conv2d(inner_dim, dim, 1, bias=False),
+ )
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ return self.fn(x)
+
+
+class Attention(nn.Module):
+ def __init__(
+ self, dim: int, heads: int = 4, dim_head: int = 64, scale: int = 8
+ ) -> None:
+ super().__init__()
+ self.scale = scale
+ self.heads = heads
+ inner_dim = heads * dim_head
+ self.norm = LayerNorm(dim)
+
+ self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias=False)
+ self.to_out = nn.Conv2d(inner_dim, dim, 1, bias=False)
+
+ def forward(self, x: Tensor) -> Tensor:
+ h, w = x.shape[-2:]
+
+ residual = x.clone()
+
+ x = self.norm(x)
+
+ q, k, v = self.to_qkv(x).chunk(3, dim=1)
+ q, k, v = map(
+ lambda t: rearrange(t, "b (h c) ... -> b h (...) c", h=self.heads),
+ (q, k, v),
+ )
+
+ q, k = map(l2norm, (q, k))
+
+ sim = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
+ attn = sim.softmax(dim=-1)
+
+ out = einsum("b h i j, b h j d -> b h i d", attn, v)
+
+ out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w)
+ return self.to_out(out) + residual
+
+
+class TransformerBlock(nn.Module):
+ def __init__(self, attn: Attention, ff: FeedForward) -> None:
+ super().__init__()
+ self.attn = attn
+ self.ff = ff
+
+ def forward(self, x: Tensor) -> Tensor:
+ x = self.attn(x)
+ x = self.ff(x)
+ return x
diff --git a/text_recognizer/network/convnext/convnext.py b/text_recognizer/network/convnext/convnext.py
new file mode 100644
index 0000000..6acf059
--- /dev/null
+++ b/text_recognizer/network/convnext/convnext.py
@@ -0,0 +1,77 @@
+"""ConvNext module."""
+from typing import Optional, Sequence
+
+from torch import Tensor, nn
+
+from text_recognizer.network.convnext.attention import TransformerBlock
+from text_recognizer.network.convnext.downsample import Downsample
+from text_recognizer.network.convnext.norm import LayerNorm
+
+
+class ConvNextBlock(nn.Module):
+ """ConvNext block."""
+
+ def __init__(self, dim: int, dim_out: int, mult: int) -> None:
+ super().__init__()
+ self.ds_conv = nn.Conv2d(
+ dim, dim, kernel_size=(7, 7), padding="same", groups=dim
+ )
+ self.net = nn.Sequential(
+ LayerNorm(dim),
+ nn.Conv2d(dim, dim_out * mult, kernel_size=(3, 3), padding="same"),
+ nn.GELU(),
+ nn.Conv2d(dim_out * mult, dim_out, kernel_size=(3, 3), padding="same"),
+ )
+ self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
+
+ def forward(self, x: Tensor) -> Tensor:
+ h = self.ds_conv(x)
+ h = self.net(h)
+ return h + self.res_conv(x)
+
+
+class ConvNext(nn.Module):
+ def __init__(
+ self,
+ dim: int = 16,
+ dim_mults: Sequence[int] = (2, 4, 8),
+ depths: Sequence[int] = (3, 3, 6),
+ downsampling_factors: Sequence[Sequence[int]] = ((2, 2), (2, 2), (2, 2)),
+ attn: Optional[TransformerBlock] = None,
+ ) -> None:
+ super().__init__()
+ dims = (dim, *map(lambda m: m * dim, dim_mults))
+ self.attn = attn if attn is not None else nn.Identity()
+ self.out_channels = dims[-1]
+ self.stem = nn.Conv2d(1, dims[0], kernel_size=7, padding="same")
+ self.layers = nn.ModuleList([])
+
+ for i in range(len(dims) - 1):
+ dim_in, dim_out = dims[i], dims[i + 1]
+ self.layers.append(
+ nn.ModuleList(
+ [
+ ConvNextBlock(dim_in, dim_in, 2),
+ nn.ModuleList(
+ [ConvNextBlock(dim_in, dim_in, 2) for _ in range(depths[i])]
+ ),
+ Downsample(dim_in, dim_out, downsampling_factors[i]),
+ ]
+ )
+ )
+ self.norm = LayerNorm(dims[-1])
+
+ def _init_weights(self, m):
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
+ nn.init.trunc_normal_(m.weight, std=0.02)
+ nn.init.constant_(m.bias, 0)
+
+ def forward(self, x: Tensor) -> Tensor:
+ x = self.stem(x)
+ for init_block, blocks, down in self.layers:
+ x = init_block(x)
+ for fn in blocks:
+ x = fn(x)
+ x = down(x)
+ x = self.attn(x)
+ return self.norm(x)
diff --git a/text_recognizer/network/convnext/downsample.py b/text_recognizer/network/convnext/downsample.py
new file mode 100644
index 0000000..a8a0466
--- /dev/null
+++ b/text_recognizer/network/convnext/downsample.py
@@ -0,0 +1,21 @@
+"""Convnext downsample module."""
+from typing import Tuple
+
+from einops.layers.torch import Rearrange
+from torch import Tensor, nn
+
+
+class Downsample(nn.Module):
+ """Downsamples feature maps by patches."""
+
+ def __init__(self, dim: int, dim_out: int, factors: Tuple[int, int]) -> None:
+ super().__init__()
+ s1, s2 = factors
+ self.fn = nn.Sequential(
+ Rearrange("b c (h s1) (w s2) -> b (c s1 s2) h w", s1=s1, s2=s2),
+ nn.Conv2d(dim * s1 * s2, dim_out, 1),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Applies patch function."""
+ return self.fn(x)
diff --git a/text_recognizer/network/convnext/norm.py b/text_recognizer/network/convnext/norm.py
new file mode 100644
index 0000000..3355de9
--- /dev/null
+++ b/text_recognizer/network/convnext/norm.py
@@ -0,0 +1,18 @@
+"""Layer norm for conv layers."""
+import torch
+from torch import Tensor, nn
+
+
+class LayerNorm(nn.Module):
+ """Layer norm for convolutions."""
+
+ def __init__(self, dim: int) -> None:
+ super().__init__()
+ self.gamma = nn.Parameter(torch.ones(1, dim, 1, 1))
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Applies layer norm."""
+ eps = 1e-5 if x.dtype == torch.float32 else 1e-3
+ var = torch.var(x, dim=1, unbiased=False, keepdim=True)
+ mean = torch.mean(x, dim=1, keepdim=True)
+ return (x - mean) / (var + eps).sqrt() * self.gamma
diff --git a/text_recognizer/network/convnext/residual.py b/text_recognizer/network/convnext/residual.py
new file mode 100644
index 0000000..dfc2847
--- /dev/null
+++ b/text_recognizer/network/convnext/residual.py
@@ -0,0 +1,16 @@
+"""Generic residual layer."""
+from typing import Callable
+
+from torch import Tensor, nn
+
+
+class Residual(nn.Module):
+ """Residual layer."""
+
+ def __init__(self, fn: Callable) -> None:
+ super().__init__()
+ self.fn = fn
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Applies residual fn."""
+ return self.fn(x) + x
diff --git a/text_recognizer/network/transformer/__init__.py b/text_recognizer/network/transformer/__init__.py
new file mode 100644
index 0000000..a3f3011
--- /dev/null
+++ b/text_recognizer/network/transformer/__init__.py
@@ -0,0 +1 @@
+"""Transformer modules."""
diff --git a/text_recognizer/network/transformer/attend.py b/text_recognizer/network/transformer/attend.py
new file mode 100644
index 0000000..4e643fb
--- /dev/null
+++ b/text_recognizer/network/transformer/attend.py
@@ -0,0 +1,94 @@
+from typing import Optional
+from collections import namedtuple
+
+import torch
+from torch import Tensor, einsum, nn
+from einops import rearrange
+import torch.nn.functional as F
+
+Config = namedtuple(
+ "FlashAttentionConfig", ["enable_flash", "enable_math", "enable_mem_efficient"]
+)
+
+
+class Attend(nn.Module):
+ def __init__(self, use_flash: bool) -> None:
+ super().__init__()
+ self.use_flash = use_flash
+ self.cpu_cfg = Config(True, True, True)
+ self.cuda_cfg = None
+ if not torch.cuda.is_available():
+ return
+
+ device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
+ if device_properties.major == 8 and device_properties.minor == 0:
+ self.cuda_cfg = Config(True, False, False)
+ else:
+ self.cuda_cfg = Config(False, True, True)
+
+ def flash_attn(self, q: Tensor, k: Tensor, v: Tensor, causal: bool) -> Tensor:
+ cfg = self.cuda_cfg if q.is_cuda else self.cpu_cfg
+ with torch.backends.cuda.sdp_kernel(**cfg._asdict()):
+ out = F.scaled_dot_product_attention(q, k, v, is_causal=causal)
+ return out
+
+ def atten(
+ self,
+ q: Tensor,
+ k: Tensor,
+ v: Tensor,
+ causal: bool,
+ mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ b = q.shape[0]
+ energy = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
+
+ mask_value = -torch.finfo(energy.dtype).max
+
+ if mask is not None:
+ energy = apply_input_mask(b, k, energy, mask, mask_value)
+
+ if causal:
+ energy = apply_causal_mask(energy, mask_value)
+
+ attn = F.softmax(energy, dim=-1)
+ attn = self.dropout(attn)
+ return einsum("b h i j, b h j d -> b h i d", attn, v)
+
+ def forward(
+ self,
+ q: Tensor,
+ k: Tensor,
+ v: Tensor,
+ causal: bool,
+ mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ if self.use_flash:
+ return self.flash_attn(q, k, v, causal)
+ else:
+ return self.atten(q, k, v, causal, mask)
+
+
+def apply_input_mask(
+ b: int,
+ k: Tensor,
+ energy: Tensor,
+ mask: Optional[Tensor],
+ mask_value: float,
+) -> Tensor:
+ """Applies an input mask."""
+ k_mask = torch.ones((b, k.shape[-2]), device=energy.device).bool()
+ q_mask = rearrange(mask, "b i -> b () i ()")
+ k_mask = rearrange(k_mask, "b j -> b () () j")
+ input_mask = q_mask * k_mask
+ return energy.masked_fill_(~input_mask, mask_value)
+
+
+def apply_causal_mask(
+ energy: Tensor,
+ mask_value: float,
+) -> Tensor:
+ """Applies a causal mask to the energy tensor."""
+ i, j, device = *energy.shape[-2:], energy.device
+ causal_mask = torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)
+ return energy.masked_fill(causal_mask, mask_value)
diff --git a/text_recognizer/network/transformer/attention.py b/text_recognizer/network/transformer/attention.py
new file mode 100644
index 0000000..8e18f8a
--- /dev/null
+++ b/text_recognizer/network/transformer/attention.py
@@ -0,0 +1,56 @@
+"""Implements the attention module for the transformer."""
+from typing import Optional
+from text_recognizer.network.transformer.norm import RMSNorm
+from text_recognizer.network.transformer.attend import Attend
+
+import torch
+from einops import rearrange
+from torch import Tensor, nn
+
+
+class Attention(nn.Module):
+ """Standard attention."""
+
+ def __init__(
+ self,
+ dim: int,
+ heads: int,
+ causal: bool = False,
+ dim_head: int = 64,
+ dropout_rate: float = 0.0,
+ use_flash: bool = True,
+ ) -> None:
+ super().__init__()
+ self.heads = heads
+ inner_dim = dim_head * heads
+ self.norm = nn.LayerNorm(dim)
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
+ # self.q_norm = RMSNorm(heads, dim_head)
+ # self.k_norm = RMSNorm(heads, dim_head)
+ self.attend = Attend(use_flash)
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
+ self.scale = dim**-0.5
+ self.causal = causal
+ self.dropout_rate = dropout_rate
+ self.dropout = nn.Dropout(p=self.dropout_rate)
+
+ def forward(
+ self,
+ x: Tensor,
+ context: Optional[Tensor] = None,
+ mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ """Computes the attention."""
+ x = self.norm(x)
+ q = self.to_q(x)
+ k = self.to_k(x if context is None else context)
+ v = self.to_v(x if context is None else context)
+ q, k, v = map(
+ lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), (q, k, v)
+ )
+ out = self.attend(q, k, v, self.causal, mask)
+ out = rearrange(out, "b h n d -> b n (h d)")
+ out = self.to_out(out)
+ return out
diff --git a/text_recognizer/network/transformer/decoder.py b/text_recognizer/network/transformer/decoder.py
new file mode 100644
index 0000000..06925ba
--- /dev/null
+++ b/text_recognizer/network/transformer/decoder.py
@@ -0,0 +1,57 @@
+"""Transformer decoder module."""
+from typing import Optional
+from torch import Tensor, nn
+
+from text_recognizer.network.transformer.attention import Attention
+from text_recognizer.network.transformer.ff import FeedForward
+
+
+class Decoder(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ inner_dim: int,
+ heads: int,
+ dim_head: int,
+ depth: int,
+ dropout_rate: float = 0.0,
+ ) -> None:
+ super().__init__()
+ self.norm = nn.LayerNorm(dim)
+ self.layers = nn.ModuleList(
+ [
+ nn.ModuleList(
+ [
+ Attention(
+ dim,
+ heads,
+ True,
+ dim_head,
+ dropout_rate,
+ ),
+ FeedForward(dim, inner_dim, dropout_rate),
+ Attention(
+ dim,
+ heads,
+ False,
+ dim_head,
+ dropout_rate,
+ ),
+ ]
+ )
+ for _ in range(depth)
+ ]
+ )
+
+ def forward(
+ self,
+ x: Tensor,
+ context: Tensor,
+ mask: Optional[Tensor] = None,
+ ) -> Tensor:
+ """Applies decoder block on input signals."""
+ for self_attn, ff, cross_attn in self.layers:
+ x = x + self_attn(x, mask=mask)
+ x = x + ff(x)
+ x = x + cross_attn(x, context=context)
+ return self.norm(x)
diff --git a/text_recognizer/network/transformer/embedding/__init__.py b/text_recognizer/network/transformer/embedding/__init__.py
new file mode 100644
index 0000000..bb3f904
--- /dev/null
+++ b/text_recognizer/network/transformer/embedding/__init__.py
@@ -0,0 +1 @@
+"""Positional encodings for transformers."""
diff --git a/text_recognizer/network/transformer/embedding/absolute.py b/text_recognizer/network/transformer/embedding/absolute.py
new file mode 100644
index 0000000..08b2c2a
--- /dev/null
+++ b/text_recognizer/network/transformer/embedding/absolute.py
@@ -0,0 +1,28 @@
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+from text_recognizer.network.transformer.embedding.l2_norm import l2_norm
+
+
+class AbsolutePositionalEmbedding(nn.Module):
+ def __init__(self, dim: int, max_length: int, use_l2: bool = False) -> None:
+ super().__init__()
+ self.scale = dim**-0.5 if not use_l2 else 1.0
+ self.max_length = max_length
+ self.use_l2 = use_l2
+ self.to_embedding = nn.Embedding(max_length, dim)
+ if self.use_l2:
+ nn.init.normal_(self.to_embedding.weight, std=1e-5)
+
+ def forward(self, x: Tensor, pos: Optional[Tensor] = None) -> Tensor:
+ n, device = x.shape[1], x.device
+ assert (
+ n <= self.max_length
+ ), f"Sequence length {n} is greater than the maximum positional embedding {self.max_length}"
+
+ if pos is None:
+ pos = torch.arange(n, device=device)
+
+ embedding = self.to_embedding(pos) * self.scale
+ return l2_norm(embedding) if self.use_l2 else embedding
diff --git a/text_recognizer/network/transformer/embedding/l2_norm.py b/text_recognizer/network/transformer/embedding/l2_norm.py
new file mode 100644
index 0000000..0e48bca
--- /dev/null
+++ b/text_recognizer/network/transformer/embedding/l2_norm.py
@@ -0,0 +1,9 @@
+from einops import rearrange
+import torch.nn.functional as F
+from torch import Tensor
+
+
+def l2_norm(t: Tensor, groups=1) -> Tensor:
+ t = rearrange(t, "... (g d) -> ... g d", g=groups)
+ t = F.normalize(t, p=2, dim=-1)
+ return rearrange(t, "... g d -> ... (g d)")
diff --git a/text_recognizer/network/transformer/embedding/sincos.py b/text_recognizer/network/transformer/embedding/sincos.py
new file mode 100644
index 0000000..ed6b0ab
--- /dev/null
+++ b/text_recognizer/network/transformer/embedding/sincos.py
@@ -0,0 +1,13 @@
+import torch
+
+
+def sincos_2d(h, w, dim, temperature: int = 10000, dtype=torch.float32):
+ y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
+ assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
+ omega = torch.arange(dim // 4) / (dim // 4 - 1)
+ omega = 1.0 / (temperature**omega)
+
+ y = y.flatten()[:, None] * omega[None, :]
+ x = x.flatten()[:, None] * omega[None, :]
+ pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
+ return pe.type(dtype)
diff --git a/text_recognizer/network/transformer/embedding/token.py b/text_recognizer/network/transformer/embedding/token.py
new file mode 100644
index 0000000..1df2fd6
--- /dev/null
+++ b/text_recognizer/network/transformer/embedding/token.py
@@ -0,0 +1,18 @@
+from torch import nn, Tensor
+
+from text_recognizer.network.transformer.embedding.l2_norm import l2_norm
+
+
+class TokenEmbedding(nn.Module):
+ def __init__(self, num_tokens: int, dim: int, use_l2: bool = True) -> None:
+ super().__init__()
+ self.use_l2 = use_l2
+ self.to_embedding = nn.Embedding(num_tokens, dim)
+ if self.use_l2:
+ nn.init.normal_(self.to_embedding.weight, std=1e-5)
+ else:
+ nn.init.kaiming_normal_(self.to_embedding.weight)
+
+ def forward(self, x: Tensor) -> Tensor:
+ embedding = self.to_embedding(x)
+ return l2_norm(embedding) if self.use_l2 else embedding
diff --git a/text_recognizer/network/transformer/encoder.py b/text_recognizer/network/transformer/encoder.py
new file mode 100644
index 0000000..ea4b0b3
--- /dev/null
+++ b/text_recognizer/network/transformer/encoder.py
@@ -0,0 +1,46 @@
+"""Transformer encoder module."""
+from torch import Tensor, nn
+
+from text_recognizer.network.transformer.attention import Attention
+from text_recognizer.network.transformer.ff import FeedForward
+
+
+class Encoder(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ inner_dim: int,
+ heads: int,
+ dim_head: int,
+ depth: int,
+ dropout_rate: float = 0.0,
+ ) -> None:
+ super().__init__()
+ self.norm = nn.LayerNorm(dim)
+ self.layers = nn.ModuleList(
+ [
+ nn.ModuleList(
+ [
+ Attention(
+ dim,
+ heads,
+ False,
+ dim_head,
+ dropout_rate,
+ ),
+ FeedForward(dim, inner_dim, dropout_rate),
+ ]
+ )
+ for _ in range(depth)
+ ]
+ )
+
+ def forward(
+ self,
+ x: Tensor,
+ ) -> Tensor:
+ """Applies decoder block on input signals."""
+ for self_attn, ff in self.layers:
+ x = x + self_attn(x)
+ x = x + ff(x)
+ return self.norm(x)
diff --git a/text_recognizer/network/transformer/ff.py b/text_recognizer/network/transformer/ff.py
new file mode 100644
index 0000000..9181323
--- /dev/null
+++ b/text_recognizer/network/transformer/ff.py
@@ -0,0 +1,22 @@
+"""Feedforward layer in transformer."""
+from torch import Tensor, nn
+
+
+class FeedForward(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ inner_dim: int,
+ dropout_rate: float = 0.0,
+ ) -> None:
+ super().__init__()
+ self.ff = nn.Sequential(
+ nn.LayerNorm(dim),
+ nn.Linear(dim, inner_dim),
+ nn.GELU(),
+ nn.Dropout(dropout_rate),
+ nn.Linear(inner_dim, dim),
+ )
+
+ def forward(self, x: Tensor) -> Tensor:
+ return self.ff(x)
diff --git a/text_recognizer/network/transformer/norm.py b/text_recognizer/network/transformer/norm.py
new file mode 100644
index 0000000..2737754
--- /dev/null
+++ b/text_recognizer/network/transformer/norm.py
@@ -0,0 +1,22 @@
+"""Normalization layers for transformers.
+
+Copied from lucidrains:
+ https://github.com/lucidrains/x-transformers/blob/main/x_transformers/x_transformers.py
+
+"""
+import torch
+from torch import Tensor, nn
+import torch.nn.functional as F
+
+
+class RMSNorm(nn.Module):
+ """Root mean square layer normalization."""
+
+ def __init__(self, heads: int, dim: int) -> None:
+ super().__init__()
+ self.scale = dim**-0.5
+ self.gamma = nn.Parameter(torch.ones(heads, 1, dim))
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Applies normalization."""
+ return F.normalize(x, dim=-1) * self.scale * self.gamma
diff --git a/text_recognizer/network/vit.py b/text_recognizer/network/vit.py
new file mode 100644
index 0000000..80176a8
--- /dev/null
+++ b/text_recognizer/network/vit.py
@@ -0,0 +1,76 @@
+"""Transformer module."""
+from typing import Type
+
+from einops.layers.torch import Rearrange
+from torch import Tensor, nn
+
+from text_recognizer.network.transformer.embedding.token import TokenEmbedding
+from text_recognizer.network.transformer.embedding.sincos import sincos_2d
+from text_recognizer.network.transformer.decoder import Decoder
+from text_recognizer.network.transformer.encoder import Encoder
+
+
+class VisionTransformer(nn.Module):
+ def __init__(
+ self,
+ image_height: int,
+ image_width: int,
+ patch_height: int,
+ patch_width: int,
+ dim: int,
+ num_classes: int,
+ encoder: Encoder,
+ decoder: Decoder,
+ token_embedding: TokenEmbedding,
+ pos_embedding: Type[nn.Module],
+ tie_embeddings: bool,
+ pad_index: int,
+ ) -> None:
+ super().__init__()
+ patch_dim = patch_height * patch_width
+ self.to_patch_embedding = nn.Sequential(
+ Rearrange(
+ "b c (h ph) (w pw) -> b (h w) (ph pw c)",
+ ph=patch_height,
+ pw=patch_width,
+ ),
+ nn.LayerNorm(patch_dim),
+ nn.Linear(patch_dim, dim),
+ nn.LayerNorm(dim),
+ )
+ self.patch_embedding = sincos_2d(
+ h=image_height // patch_height, w=image_width // patch_width, dim=dim
+ )
+ self.pos_embedding = pos_embedding
+ self.token_embedding = token_embedding
+ self.to_logits = (
+ nn.Linear(dim, num_classes)
+ if not tie_embeddings
+ else lambda t: t @ self.token_embedding.to_embedding.weight.t()
+ )
+ self.encoder = encoder
+ self.decoder = decoder
+ self.pad_index = pad_index
+
+ def encode(self, img: Tensor) -> Tensor:
+ x = self.to_patch_embedding(img)
+ x += self.patch_embedding.to(img.device, dtype=img.dtype)
+ return self.encoder(x)
+
+ def decode(self, text: Tensor, context: Tensor) -> Tensor:
+ text = text.long()
+ mask = text != self.pad_index
+ tokens = self.token_embedding(text)
+ tokens = tokens + self.pos_embedding(tokens)
+ output = self.decoder(tokens, context)
+ return self.to_logits(output)
+
+ def forward(
+ self,
+ img: Tensor,
+ text: Tensor,
+ ) -> Tensor:
+ """Applies decoder block on input signals."""
+ context = self.encode(img)
+ logits = self.decode(text, context)
+ return logits.permute(0, 2, 1)