diff options
Diffstat (limited to 'text_recognizer/network')
-rw-r--r-- | text_recognizer/network/convformer.py | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/text_recognizer/network/convformer.py b/text_recognizer/network/convformer.py new file mode 100644 index 0000000..0ee5487 --- /dev/null +++ b/text_recognizer/network/convformer.py @@ -0,0 +1,77 @@ +from typing import Optional + +from einops.layers.torch import Rearrange +from torch import Tensor, nn + +from text_recognizer.network.convnext.convnext import ConvNext +from .transformer.embedding.token import TokenEmbedding +from .transformer.embedding.sincos import sincos_2d +from .transformer.decoder import Decoder +from .transformer.encoder import Encoder + + +class Convformer(nn.Module): + def __init__( + self, + image_height: int, + image_width: int, + patch_height: int, + patch_width: int, + dim: int, + num_classes: int, + encoder: Encoder, + decoder: Decoder, + token_embedding: TokenEmbedding, + tie_embeddings: bool, + pad_index: int, + stem: Optional[ConvNext] = None, + channels: int = 1, + ) -> None: + super().__init__() + patch_dim = patch_height * patch_width * channels + self.stem = stem if stem is not None else nn.Identity() + self.to_patch_embedding = nn.Sequential( + Rearrange( + "b c (h ph) (w pw) -> b (h w) (ph pw c)", + ph=patch_height, + pw=patch_width, + ), + nn.LayerNorm(patch_dim), + nn.Linear(patch_dim, dim), + nn.LayerNorm(dim), + ) + self.patch_embedding = sincos_2d( + h=image_height // patch_height, w=image_width // patch_width, dim=dim + ) + self.token_embedding = token_embedding + self.to_logits = ( + nn.Linear(dim, num_classes) + if not tie_embeddings + else lambda t: t @ self.token_embedding.to_embedding.weight.t() + ) + self.encoder = encoder + self.decoder = decoder + self.pad_index = pad_index + + def encode(self, img: Tensor) -> Tensor: + x = self.stem(img) + x = self.to_patch_embedding(x) + x += self.patch_embedding.to(img.device, dtype=img.dtype) + return self.encoder(x) + + def decode(self, text: Tensor, img_features: Tensor) -> Tensor: + text = text.long() + mask = text != self.pad_index + tokens = self.token_embedding(text) + output = self.decoder(tokens, context=img_features, mask=mask) + return self.to_logits(output) + + def forward( + self, + img: Tensor, + text: Tensor, + ) -> Tensor: + """Applies decoder block on input signals.""" + img_features = self.encode(img) + logits = self.decode(text, img_features) + return logits # [B, N, C] |