diff options
Diffstat (limited to 'text_recognizer/networks/conformer/subsampler.py')
-rw-r--r-- | text_recognizer/networks/conformer/subsampler.py | 46 |
1 files changed, 46 insertions, 0 deletions
diff --git a/text_recognizer/networks/conformer/subsampler.py b/text_recognizer/networks/conformer/subsampler.py new file mode 100644 index 0000000..2bc0445 --- /dev/null +++ b/text_recognizer/networks/conformer/subsampler.py @@ -0,0 +1,46 @@ +"""Simple convolutional network.""" +from typing import Tuple + +from torch import nn, Tensor + +from text_recognizer.networks.transformer import ( + AxialPositionalEmbedding, +) + + +class Subsampler(nn.Module): + def __init__( + self, + channels: int, + depth: int, + pixel_pos_embedding: AxialPositionalEmbedding, + dropout: float = 0.1, + ) -> None: + super().__init__() + self.pixel_pos_embedding = pixel_pos_embedding + self.subsampler, self.projector = self._build(channels, depth, dropout) + + def _build( + self, channels: int, depth: int, dropout: float + ) -> Tuple[nn.Sequential, nn.Sequential]: + subsampler = [] + for i in range(depth): + subsampler.append( + nn.Conv2d( + in_channels=1 if i == 0 else channels, + out_channels=channels, + kernel_size=3, + stride=2, + ) + ) + subsampler.append(nn.Mish(inplace=True)) + projector = nn.Sequential( + nn.Flatten(start_dim=2), nn.Linear(channels, channels), nn.Dropout(dropout) + ) + return nn.Sequential(*subsampler), projector + + def forward(self, x: Tensor) -> Tensor: + x = self.subsampler(x) + x = self.pixel_pos_embedding(x) + x = self.projector(x) + return x.permute(0, 2, 1) |