summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/convnext/convnext.py
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/networks/convnext/convnext.py')
-rw-r--r--text_recognizer/networks/convnext/convnext.py77
1 files changed, 0 insertions, 77 deletions
diff --git a/text_recognizer/networks/convnext/convnext.py b/text_recognizer/networks/convnext/convnext.py
deleted file mode 100644
index 9419a15..0000000
--- a/text_recognizer/networks/convnext/convnext.py
+++ /dev/null
@@ -1,77 +0,0 @@
-"""ConvNext module."""
-from typing import Optional, Sequence
-
-from torch import Tensor, nn
-
-from text_recognizer.networks.convnext.attention import TransformerBlock
-from text_recognizer.networks.convnext.downsample import Downsample
-from text_recognizer.networks.convnext.norm import LayerNorm
-
-
-class ConvNextBlock(nn.Module):
- """ConvNext block."""
-
- def __init__(self, dim: int, dim_out: int, mult: int) -> None:
- super().__init__()
- self.ds_conv = nn.Conv2d(
- dim, dim, kernel_size=(7, 7), padding="same", groups=dim
- )
- self.net = nn.Sequential(
- LayerNorm(dim),
- nn.Conv2d(dim, dim_out * mult, kernel_size=(3, 3), padding="same"),
- nn.GELU(),
- nn.Conv2d(dim_out * mult, dim_out, kernel_size=(3, 3), padding="same"),
- )
- self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
-
- def forward(self, x: Tensor) -> Tensor:
- h = self.ds_conv(x)
- h = self.net(h)
- return h + self.res_conv(x)
-
-
-class ConvNext(nn.Module):
- def __init__(
- self,
- dim: int = 16,
- dim_mults: Sequence[int] = (2, 4, 8),
- depths: Sequence[int] = (3, 3, 6),
- downsampling_factors: Sequence[Sequence[int]] = ((2, 2), (2, 2), (2, 2)),
- attn: Optional[TransformerBlock] = None,
- ) -> None:
- super().__init__()
- dims = (dim, *map(lambda m: m * dim, dim_mults))
- self.attn = attn if attn is not None else nn.Identity()
- self.out_channels = dims[-1]
- self.stem = nn.Conv2d(1, dims[0], kernel_size=7, padding="same")
- self.layers = nn.ModuleList([])
-
- for i in range(len(dims) - 1):
- dim_in, dim_out = dims[i], dims[i + 1]
- self.layers.append(
- nn.ModuleList(
- [
- ConvNextBlock(dim_in, dim_in, 2),
- nn.ModuleList(
- [ConvNextBlock(dim_in, dim_in, 2) for _ in range(depths[i])]
- ),
- Downsample(dim_in, dim_out, downsampling_factors[i]),
- ]
- )
- )
- self.norm = LayerNorm(dims[-1])
-
- def _init_weights(self, m):
- if isinstance(m, (nn.Conv2d, nn.Linear)):
- nn.init.trunc_normal_(m.weight, std=0.02)
- nn.init.constant_(m.bias, 0)
-
- def forward(self, x: Tensor) -> Tensor:
- x = self.stem(x)
- for init_block, blocks, down in self.layers:
- x = init_block(x)
- for fn in blocks:
- x = fn(x)
- x = down(x)
- x = self.attn(x)
- return self.norm(x)