summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/transformer/axial_attention/encoder.py
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/networks/transformer/axial_attention/encoder.py')
-rw-r--r--text_recognizer/networks/transformer/axial_attention/encoder.py80
1 files changed, 80 insertions, 0 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/encoder.py b/text_recognizer/networks/transformer/axial_attention/encoder.py
new file mode 100644
index 0000000..3082bd6
--- /dev/null
+++ b/text_recognizer/networks/transformer/axial_attention/encoder.py
@@ -0,0 +1,80 @@
+"""Axial transformer encoder."""
+
+from typing import List
+
+import attr
+from torch import nn, Tensor
+
+from text_recognizer.networks.transformer.axial_attention.self_attention import (
+ SelfAttention,
+)
+from text_recognizer.networks.transformer.axial_attention.utils import (
+ calculate_permutations,
+ PermuteToForm,
+ Sequential,
+)
+from text_recognizer.networks.transformer.norm import PreNorm
+
+
+@attr.s(eq=False)
+class AxialEncoder(nn.Module):
+ """Axial transfomer encoder."""
+
+ def __attrs_pre_init__(self) -> None:
+ super().__init__()
+
+ shape: List[int] = attr.ib()
+ dim: int = attr.ib()
+ depth: int = attr.ib()
+ heads: int = attr.ib()
+ dim_head: int = attr.ib()
+ dim_index: int = attr.ib()
+ fn: nn.Sequential = attr.ib(init=False)
+
+ def __attrs_post_init__(self) -> None:
+ self._build()
+
+ def _build(self) -> None:
+ permutations = calculate_permutations(2, self.dim_index)
+ get_ff = lambda: nn.Sequential(
+ nn.LayerNorm([self.dim, *self.shape]),
+ nn.Conv2d(
+ in_channels=self.dim,
+ out_channels=4 * self.dim,
+ kernel_size=3,
+ padding=1,
+ ),
+ nn.Mish(inplace=True),
+ nn.Conv2d(
+ in_channels=4 * self.dim,
+ out_channels=self.dim,
+ kernel_size=3,
+ padding=1,
+ ),
+ )
+
+ layers = nn.ModuleList([])
+ for _ in range(self.depth):
+ attns = nn.ModuleList(
+ [
+ PermuteToForm(
+ permutation=permutation,
+ fn=PreNorm(
+ self.dim,
+ SelfAttention(
+ dim=self.dim, heads=self.heads, dim_head=self.dim_head
+ ),
+ ),
+ )
+ for permutation in permutations
+ ]
+ )
+ convs = nn.ModuleList([get_ff(), get_ff()])
+ layers.append(attns)
+ layers.append(convs)
+
+ self.fn = Sequential(layers)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Applies fn to input."""
+ return self.fn(x)