diff options
Diffstat (limited to 'text_recognizer/networks/transformer/axial_attention/utils.py')
-rw-r--r-- | text_recognizer/networks/transformer/axial_attention/utils.py | 80 |
1 files changed, 80 insertions, 0 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/utils.py b/text_recognizer/networks/transformer/axial_attention/utils.py new file mode 100644 index 0000000..534ef4e --- /dev/null +++ b/text_recognizer/networks/transformer/axial_attention/utils.py @@ -0,0 +1,80 @@ +"""Helper functions for axial attention.""" +from operator import itemgetter +from typing import Callable, List, Tuple + +import attr +from torch import nn, Tensor + + +def _map_el_ind(arr: Tensor, ind: int) -> List: + return list(map(itemgetter(ind), arr)) + + +def _sort_indices(arr: Tensor) -> Tuple[List[int], List[int]]: + indices = [i for i in range(len(arr))] + arr = zip(arr, indices) + arr = sorted(arr) + return _map_el_ind(arr, 0), _map_el_ind(arr, 1) + + +def calculate_permutations(num_dims: int, emb_dim: int) -> List[List[int]]: + """Returns permutations of tensor.""" + total_dims = num_dims + 2 + axial_dims = [i for i in range(1, total_dims) if i != emb_dim] + + permutations = [] + + for axial_dim in axial_dims: + last_two_dims = [axial_dim, emb_dim] + dims_rest = set(range(0, total_dims)) - set(last_two_dims) + permutation = [*dims_rest, *last_two_dims] + permutations.append(permutation) + + return permutations + + +@attr.s(eq=False) +class PermuteToForm(nn.Module): + """Helper class for applying axial attention.""" + + def __attrs_pre_init__(self) -> None: + super().__init__() + + fn: Callable = attr.ib() + permutation: List[List[int]] = attr.ib() + inv_permutation: List[List[int]] = attr.ib(init=False) + + def __attrs_post_init__(self) -> None: + _, self.inv_permutation = _sort_indices(self.permutation) + + def forward(self, x: Tensor) -> Tensor: + """Permutes tensor, applies axial attention, permutes tensor back.""" + x = x.permute(*self.permutation).contiguous() + shape = x.shape + *_, t, d = shape + + # Merge all but axial dimension + x = x.reshape(-1, t, d) + + # Apply attention + x = self.fn(x) + + # Restore original shape and permutation + x = x.reshape(*shape) + x = x.permute(*self.inv_permutation).contiguous() + return x + + +class Sequential(nn.Module): + """Applies a list of paired functions to input.""" + + def __init__(self, fns: nn.ModuleList) -> None: + super().__init__() + self.fns = fns + + def forward(self, x: Tensor) -> Tensor: + """Applies blocks to input.""" + for f, g in self.fns: + x = x + f(x) + x = x + g(x) + return x |