diff options
Diffstat (limited to 'text_recognizer/networks/transformer/embeddings')
-rw-r--r-- | text_recognizer/networks/transformer/embeddings/rotary.py | 55 |
1 files changed, 41 insertions, 14 deletions
diff --git a/text_recognizer/networks/transformer/embeddings/rotary.py b/text_recognizer/networks/transformer/embeddings/rotary.py index cc91206..ca0a260 100644 --- a/text_recognizer/networks/transformer/embeddings/rotary.py +++ b/text_recognizer/networks/transformer/embeddings/rotary.py @@ -6,6 +6,9 @@ Stolen from lucidrains: Explanation of roatary: https://blog.eleuther.ai/rotary-embeddings/ """ +from inspect import isfunction + +from einops import rearrange, repeat import torch from torch import Tensor, nn @@ -17,24 +20,48 @@ class RotaryEmbedding(nn.Module): super().__init__() inv_freqs = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freqs", inv_freqs) + self.cache = {} + + def rotate(self, t: Tensor, dim: int = -2) -> Tensor: + """Rotate vector.""" + device, n = t.device, t.shape[dim] + freqs = self.forward(lambda: torch.arange(n, device=device), cache_key=n) + return apply_rotary_emb(t, freqs) - def forward(self, x: Tensor) -> Tensor: + def forward(self, t: Tensor, cache_key: int) -> Tensor: """Encodes tensor x with rotary embeddings.""" - n = x.shape[-2] - t = torch.arange(n, device=x.device).type_as(self.inv_freqs) - freqs = torch.einsum("i , j -> i j", t, self.inv_freqs) - emb = torch.cat((freqs, freqs), dim=-1) - return emb[None, :, :] + if cache_key in self.cache: + return self.cache[cache_key] + + if isfunction(t): + t = t() + + freqs = self.inv_freqs + freqs = torch.einsum("..., f -> ... f", t.type(freqs.dtype), freqs) + freqs = repeat(freqs, "... n -> ... (n r)", r=2) + self.cache[cache_key] = freqs + return freqs def rotate_half(x: Tensor) -> Tensor: - if len(x.shape) == 3: - x = x.reshape((x.shape[0], -1, 2, x.shape[-1] // 2)) - else: - x = x.reshape((x.shape[0], x.shape[1], -1, 2, x.shape[-1] // 2)) - x1, x2 = x.unbind(dim=-2) - return torch.cat((-x2, x1), dim=-1) + x = rearrange(x, "... (d r) -> ... d r", r=2) + x1, x2 = x.unbind(dim=-1) + x = torch.stack((-x2, x1), dim=-1) + return rearrange(x, "... d r -> ... (d r)") -def apply_rotary_pos_emb(t: Tensor, freqs: Tensor) -> Tensor: - return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) +def apply_rotary_emb(t: Tensor, freqs: Tensor, start_index: int = 0) -> Tensor: + freqs = freqs.to(t) + rot_dim = freqs.shape[-1] + end_index = start_index + rot_dim + assert rot_dim <= t.shape[-1], ( + f"feature dimension {t.shape[-1]} is not of sufficient size to rotate" + f"in all the positions {rot_dim}" + ) + t_left, t, t_right = ( + t[..., :start_index], + t[..., start_index:end_index], + t[..., end_index:], + ) + t = (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) + return torch.cat((t_left, t, t_right), dim=-1) |