diff options
Diffstat (limited to 'training/conf/experiment')
-rw-r--r-- | training/conf/experiment/conv_transformer_paragraphs_wp.yaml | 154 |
1 files changed, 0 insertions, 154 deletions
diff --git a/training/conf/experiment/conv_transformer_paragraphs_wp.yaml b/training/conf/experiment/conv_transformer_paragraphs_wp.yaml deleted file mode 100644 index bf192ec..0000000 --- a/training/conf/experiment/conv_transformer_paragraphs_wp.yaml +++ /dev/null @@ -1,154 +0,0 @@ -# @package _global_ - -defaults: - - override /mapping: null - - override /criterion: null - - override /datamodule: null - - override /network: null - - override /model: null - - override /lr_schedulers: null - - override /optimizers: null - -epochs: &epochs 1000 -ignore_index: &ignore_index 1000 -num_classes: &num_classes 1006 -max_output_len: &max_output_len 451 -summary: [[1, 1, 576, 640], [1, 451]] - -criterion: - _target_: torch.nn.CrossEntropyLoss - ignore_index: *ignore_index - -mapping: &mapping - mapping: - _target_: text_recognizer.data.mappings.word_piece_mapping.WordPieceMapping - num_features: 1000 - tokens: iamdb_1kwp_tokens_1000.txt - lexicon: iamdb_1kwp_lex_1000.txt - use_words: false - prepend_wordsep: false - special_tokens: [ <s>, <e>, <p> ] - extra_symbols: [ "\n" ] - -callbacks: - stochastic_weight_averaging: - _target_: pytorch_lightning.callbacks.StochasticWeightAveraging - swa_epoch_start: 0.75 - swa_lrs: 1.0e-5 - annealing_epochs: 10 - annealing_strategy: cos - device: null - -optimizers: - madgrad: - _target_: madgrad.MADGRAD - lr: 1.0e-4 - momentum: 0.9 - weight_decay: 0 - eps: 1.0e-6 - - parameters: network - -lr_schedulers: - network: - _target_: torch.optim.lr_scheduler.OneCycleLR - max_lr: 3.0e-4 - total_steps: null - epochs: *epochs - steps_per_epoch: 632 - pct_start: 0.3 - anneal_strategy: cos - cycle_momentum: true - base_momentum: 0.85 - max_momentum: 0.95 - div_factor: 25 - final_div_factor: 1.0e4 - three_phase: false - last_epoch: -1 - verbose: false - # Non-class arguments - interval: step - monitor: val/loss - -datamodule: - _target_: text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs - num_workers: 12 - train_fraction: 0.9 - pin_memory: true - transform: transform/paragraphs.yaml - test_transform: transform/paragraphs.yaml - target_transform: target_transform/word_piece.yaml - << : *mapping - -network: - _target_: text_recognizer.networks.conv_transformer.ConvTransformer - input_dims: [1, 576, 640] - hidden_dim: &hidden_dim 128 - encoder_dim: 1280 - dropout_rate: 0.2 - num_classes: *num_classes - pad_index: *ignore_index - encoder: - _target_: text_recognizer.networks.efficientnet.EfficientNet - arch: b0 - out_channels: 1280 - stochastic_dropout_rate: 0.2 - bn_momentum: 0.99 - bn_eps: 1.0e-3 - decoder: - _target_: text_recognizer.networks.transformer.Decoder - dim: *hidden_dim - depth: 3 - num_heads: 4 - attn_fn: text_recognizer.networks.transformer.attention.Attention - attn_kwargs: - dim_head: 32 - dropout_rate: 0.05 - norm_fn: text_recognizer.networks.transformer.norm.ScaleNorm - ff_fn: text_recognizer.networks.transformer.mlp.FeedForward - ff_kwargs: - dim_out: null - expansion_factor: 4 - glu: true - dropout_rate: 0.05 - cross_attend: true - pre_norm: true - rotary_emb: - _target_: text_recognizer.networks.transformer.positional_encodings.rotary_embedding.RotaryEmbedding - dim: 32 - pixel_pos_embedding: - _target_: text_recognizer.networks.transformer.positional_encodings.PositionalEncoding2D - hidden_dim: *hidden_dim - max_h: 18 - max_w: 20 - token_pos_embedding: - _target_: text_recognizer.networks.transformer.positional_encodings.PositionalEncoding - hidden_dim: *hidden_dim - dropout_rate: 0.05 - max_len: *max_output_len - -model: - _target_: text_recognizer.models.transformer.TransformerLitModel - max_output_len: *max_output_len - start_token: <s> - end_token: <e> - pad_token: <p> - -trainer: - _target_: pytorch_lightning.Trainer - stochastic_weight_avg: true - auto_scale_batch_size: binsearch - auto_lr_find: false - gradient_clip_val: 0.5 - fast_dev_run: false - gpus: 1 - precision: 16 - max_epochs: *epochs - terminate_on_nan: true - weights_summary: null - limit_train_batches: 1.0 - limit_val_batches: 1.0 - limit_test_batches: 1.0 - resume_from_checkpoint: null - accumulate_grad_batches: 16 - overfit_batches: 0 |