summaryrefslogtreecommitdiff
path: root/src/text_recognizer/datasets/emnist_lines_dataset.py
blob: 656131a84a17eb3fcdb71a9a451f4e298bb58c52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""Emnist Lines dataset: synthetic handwritten lines dataset made from Emnist characters."""

from collections import defaultdict
from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple, Union

import h5py
from loguru import logger
import numpy as np
import torch
from torch import Tensor
from torch.utils.data import Dataset
from torchvision.transforms import ToTensor

from text_recognizer.datasets import (
    DATA_DIRNAME,
    EmnistDataset,
    EmnistMapper,
    ESSENTIALS_FILENAME,
)
from text_recognizer.datasets.sentence_generator import SentenceGenerator
from text_recognizer.datasets.util import Transpose
from text_recognizer.networks import sliding_window

DATA_DIRNAME = DATA_DIRNAME / "processed" / "emnist_lines"


class EmnistLinesDataset(Dataset):
    """Synthetic dataset of lines from the Brown corpus with Emnist characters."""

    def __init__(
        self,
        train: bool = False,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        max_length: int = 34,
        min_overlap: float = 0,
        max_overlap: float = 0.33,
        num_samples: int = 10000,
        seed: int = 4711,
    ) -> None:
        """Set attributes and loads the dataset.

        Args:
            train (bool): Flag for the filename. Defaults to False. Defaults to None.
            transform (Optional[Callable]): The transform of the data. Defaults to None.
            target_transform (Optional[Callable]): The transform of the target. Defaults to None.
            max_length (int): The maximum number of characters. Defaults to 34.
            min_overlap (float): The minimum overlap between concatenated images. Defaults to 0.
            max_overlap (float): The maximum overlap between concatenated images. Defaults to 0.33.
            num_samples (int): Number of samples to generate. Defaults to 10000.
            seed (int): Seed number. Defaults to 4711.

        """
        self.train = train

        self.transform = transform
        if self.transform is None:
            self.transform = ToTensor()

        self.target_transform = target_transform
        if self.target_transform is None:
            self.target_transform = torch.tensor

        # Extract dataset information.
        self._mapper = EmnistMapper()
        self._input_shape = self._mapper.input_shape
        self.num_classes = self._mapper.num_classes

        self.max_length = max_length
        self.min_overlap = min_overlap
        self.max_overlap = max_overlap
        self.num_samples = num_samples
        self._input_shape = (
            self.input_shape[0],
            self.input_shape[1] * self.max_length,
        )
        self.output_shape = (self.max_length, self.num_classes)
        self.seed = seed

        # Placeholders for the dataset.
        self.data = None
        self.target = None

        # Load dataset.
        self._load_or_generate_data()

    @property
    def input_shape(self) -> Tuple:
        """Input shape of the data."""
        return self._input_shape

    def __len__(self) -> int:
        """Returns the length of the dataset."""
        return len(self.data)

    def __getitem__(self, index: Union[int, Tensor]) -> Tuple[Tensor, Tensor]:
        """Fetches data, target pair of the dataset for a given and index or indices.

        Args:
            index (Union[int, Tensor]): Either a list or int of indices/index.

        Returns:
            Tuple[Tensor, Tensor]: Data target pair.

        """
        if torch.is_tensor(index):
            index = index.tolist()

        data = self.data[index]
        targets = self.targets[index]

        if self.transform:
            data = self.transform(data)

        if self.target_transform:
            targets = self.target_transform(targets)

        return data, targets

    def __repr__(self) -> str:
        """Returns information about the dataset."""
        return (
            "EMNIST Lines Dataset\n"  # pylint: disable=no-member
            f"Max length: {self.max_length}\n"
            f"Min overlap: {self.min_overlap}\n"
            f"Max overlap: {self.max_overlap}\n"
            f"Num classes: {self.num_classes}\n"
            f"Input shape: {self.input_shape}\n"
            f"Data: {self.data.shape}\n"
            f"Tagets: {self.targets.shape}\n"
        )

    @property
    def mapper(self) -> EmnistMapper:
        """Returns the EmnistMapper."""
        return self._mapper

    @property
    def mapping(self) -> Dict:
        """Return EMNIST mapping from index to character."""
        return self._mapper.mapping

    @property
    def data_filename(self) -> Path:
        """Path to the h5 file."""
        filename = f"ml_{self.max_length}_o{self.min_overlap}_{self.max_overlap}_n{self.num_samples}.pt"
        if self.train:
            filename = "train_" + filename
        else:
            filename = "test_" + filename
        return DATA_DIRNAME / filename

    def _load_or_generate_data(self) -> None:
        """Loads the dataset, if it does not exist a new dataset is generated before loading it."""
        np.random.seed(self.seed)

        if not self.data_filename.exists():
            self._generate_data()
        self._load_data()

    def _load_data(self) -> None:
        """Loads the dataset from the h5 file."""
        logger.debug("EmnistLinesDataset loading data from HDF5...")
        with h5py.File(self.data_filename, "r") as f:
            self.data = f["data"][:]
            self.targets = f["targets"][:]

    def _generate_data(self) -> str:
        """Generates a dataset with the Brown corpus and Emnist characters."""
        logger.debug("Generating data...")

        sentence_generator = SentenceGenerator(self.max_length)

        # Load emnist dataset.
        emnist = EmnistDataset(train=self.train, sample_to_balance=True)

        samples_by_character = get_samples_by_character(
            emnist.data.numpy(), emnist.targets.numpy(), self.mapper.mapping,
        )

        DATA_DIRNAME.mkdir(parents=True, exist_ok=True)
        with h5py.File(self.data_filename, "a") as f:
            data, targets = create_dataset_of_images(
                self.num_samples,
                samples_by_character,
                sentence_generator,
                self.min_overlap,
                self.max_overlap,
            )

            targets = convert_strings_to_categorical_labels(
                targets, emnist.inverse_mapping
            )

            f.create_dataset("data", data=data, dtype="u1", compression="lzf")
            f.create_dataset("targets", data=targets, dtype="u1", compression="lzf")


def get_samples_by_character(
    samples: np.ndarray, labels: np.ndarray, mapping: Dict
) -> defaultdict:
    """Creates a dictionary with character as key and value as the list of images of that character.

    Args:
        samples (np.ndarray): Dataset of images of characters.
        labels (np.ndarray): The labels for each image.
        mapping (Dict): The Emnist mapping dictionary.

    Returns:
        defaultdict: A dictionary with characters as keys and list of images as values.

    """
    samples_by_character = defaultdict(list)
    for sample, label in zip(samples, labels.flatten()):
        samples_by_character[mapping[label]].append(sample)
    return samples_by_character


def select_letter_samples_for_string(
    string: str, samples_by_character: Dict
) -> List[np.ndarray]:
    """Randomly selects Emnist characters to use for the senetence.

    Args:
        string (str): The word or sentence.
        samples_by_character (Dict): The dictionary of emnist images of each character.

    Returns:
        List[np.ndarray]: A list of emnist images of the string.

    """
    zero_image = np.zeros((28, 28), np.uint8)
    sample_image_by_character = {}
    for character in string:
        if character in sample_image_by_character:
            continue
        samples = samples_by_character[character]
        sample = samples[np.random.choice(len(samples))] if samples else zero_image
        sample_image_by_character[character] = sample.reshape(28, 28).swapaxes(0, 1)
    return [sample_image_by_character[character] for character in string]


def construct_image_from_string(
    string: str, samples_by_character: Dict, min_overlap: float, max_overlap: float
) -> np.ndarray:
    """Concatenates images of the characters in the string.

    The concatination is made with randomly selected overlap so that some portion of the character will overlap.

    Args:
        string (str): The word or sentence.
        samples_by_character (Dict): The dictionary of emnist images of each character.
        min_overlap (float): Minimum amount of overlap between Emnist images.
        max_overlap (float): Maximum amount of overlap between Emnist images.

    Returns:
        np.ndarray: The Emnist image of the string.

    """
    overlap = np.random.uniform(min_overlap, max_overlap)
    sampled_images = select_letter_samples_for_string(string, samples_by_character)
    length = len(sampled_images)
    height, width = sampled_images[0].shape
    next_overlap_width = width - int(overlap * width)
    concatenated_image = np.zeros((height, width * length), np.uint8)
    x = 0
    for image in sampled_images:
        concatenated_image[:, x : (x + width)] += image
        x += next_overlap_width
    return np.minimum(255, concatenated_image)


def create_dataset_of_images(
    length: int,
    samples_by_character: Dict,
    sentence_generator: SentenceGenerator,
    min_overlap: float,
    max_overlap: float,
) -> Tuple[np.ndarray, List[str]]:
    """Creates a dataset with images and labels from strings generated from the SentenceGenerator.

    Args:
        length (int): The number of characters for each string.
        samples_by_character (Dict): The dictionary of emnist images of each character.
        sentence_generator (SentenceGenerator): A SentenceGenerator objest.
        min_overlap (float): Minimum amount of overlap between Emnist images.
        max_overlap (float): Maximum amount of overlap between Emnist images.

    Returns:
        Tuple[np.ndarray, List[str]]: A list of Emnist images and a list of the strings (labels).

    Raises:
        RuntimeError: If the sentence generator is not able to generate a string.

    """
    sample_label = sentence_generator.generate()
    sample_image = construct_image_from_string(sample_label, samples_by_character, 0, 0)
    images = np.zeros((length, sample_image.shape[0], sample_image.shape[1]), np.uint8)
    labels = []
    for n in range(length):
        label = None
        # Try several times to generate before actually throwing an error.
        for _ in range(10):
            try:
                label = sentence_generator.generate()
                break
            except Exception:  # pylint: disable=broad-except
                pass
        if label is None:
            raise RuntimeError("Was not able to generate a valid string.")
        images[n] = construct_image_from_string(
            label, samples_by_character, min_overlap, max_overlap
        )
        labels.append(label)
    return images, labels


def convert_strings_to_categorical_labels(
    labels: List[str], mapping: Dict
) -> np.ndarray:
    """Translates a string of characters in to a target array of class int."""
    return np.array([[mapping[c] for c in label] for label in labels])


def create_datasets(
    max_length: int = 34,
    min_overlap: float = 0,
    max_overlap: float = 0.33,
    num_train: int = 10000,
    num_test: int = 1000,
) -> None:
    """Creates a training an validation dataset of Emnist lines."""
    emnist_train = EmnistDataset(train=True, sample_to_balance=True)
    emnist_test = EmnistDataset(train=False, sample_to_balance=True)
    datasets = [emnist_train, emnist_test]
    num_samples = [num_train, num_test]
    for num, train, dataset in zip(num_samples, [True, False], datasets):
        emnist_lines = EmnistLinesDataset(
            train=train,
            emnist=dataset,
            max_length=max_length,
            min_overlap=min_overlap,
            max_overlap=max_overlap,
            num_samples=num,
        )
        emnist_lines._load_or_generate_data()