1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
"""LSTM with CTC for handwritten text recognition within a line."""
import importlib
from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple, Type, Union
from einops import rearrange, reduce
from einops.layers.torch import Rearrange, Reduce
from loguru import logger
import torch
from torch import nn
from torch import Tensor
class LineRecurrentNetwork(nn.Module):
"""Network that takes a image of a text line and predicts tokens that are in the image."""
def __init__(
self,
backbone: str,
backbone_args: Dict = None,
flatten: bool = True,
input_size: int = 128,
hidden_size: int = 128,
bidirectional: bool = False,
num_layers: int = 1,
num_classes: int = 80,
patch_size: Tuple[int, int] = (28, 28),
stride: Tuple[int, int] = (1, 14),
) -> None:
super().__init__()
self.backbone_args = backbone_args or {}
self.patch_size = patch_size
self.stride = stride
self.sliding_window = self._configure_sliding_window()
self.input_size = input_size
self.hidden_size = hidden_size
self.backbone = self._configure_backbone(backbone)
self.bidirectional = bidirectional
self.flatten = flatten
if self.flatten:
self.fc = nn.Linear(
in_features=self.input_size, out_features=self.hidden_size
)
self.rnn = nn.LSTM(
input_size=self.hidden_size,
hidden_size=self.hidden_size,
bidirectional=bidirectional,
num_layers=num_layers,
)
decoder_size = self.hidden_size * 2 if self.bidirectional else self.hidden_size
self.decoder = nn.Sequential(
nn.Linear(in_features=decoder_size, out_features=num_classes),
nn.LogSoftmax(dim=2),
)
def _configure_backbone(self, backbone: str) -> Type[nn.Module]:
network_module = importlib.import_module("text_recognizer.networks")
backbone_ = getattr(network_module, backbone)
if "pretrained" in self.backbone_args:
logger.info("Loading pretrained backbone.")
checkpoint_file = Path(__file__).resolve().parents[
2
] / self.backbone_args.pop("pretrained")
# Loading state directory.
state_dict = torch.load(checkpoint_file)
network_args = state_dict["network_args"]
weights = state_dict["model_state"]
# Initializes the network with trained weights.
backbone = backbone_(**network_args)
backbone.load_state_dict(weights)
if "freeze" in self.backbone_args and self.backbone_args["freeze"] is True:
for params in backbone.parameters():
params.requires_grad = False
return backbone
else:
return backbone_(**self.backbone_args)
def _configure_sliding_window(self) -> nn.Sequential:
return nn.Sequential(
nn.Unfold(kernel_size=self.patch_size, stride=self.stride),
Rearrange(
"b (c h w) t -> b t c h w",
h=self.patch_size[0],
w=self.patch_size[1],
c=1,
),
)
def forward(self, x: Tensor) -> Tensor:
"""Converts images to sequence of patches, feeds them to a CNN, then predictions are made with an LSTM."""
if len(x.shape) == 3:
x = x.unsqueeze(0)
x = self.sliding_window(x)
# Rearrange from a sequence of patches for feedforward network.
b, t = x.shape[:2]
x = rearrange(x, "b t c h w -> (b t) c h w", b=b, t=t)
x = self.backbone(x)
# Avgerage pooling.
x = (
self.fc(reduce(x, "(b t) c h w -> t b c", "mean", b=b, t=t))
if self.flatten
else rearrange(x, "(b t) h -> t b h", b=b, t=t)
)
# Sequence predictions.
x, _ = self.rnn(x)
# Sequence to classifcation layer.
x = self.decoder(x)
return x
|