summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/transducer/tds_conv.py
blob: 5fb8ba92c00ba72e67287d5a62187d23fe1517c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""Time-Depth Separable Convolutions.

References:
    https://arxiv.org/abs/1904.02619
    https://arxiv.org/pdf/2010.01003.pdf

Code stolen from:
    https://github.com/facebookresearch/gtn_applications


"""
from typing import List, Tuple

from einops import rearrange
import gtn
import numpy as np
import torch
from torch import nn
from torch import Tensor


class TDSBlock2d(nn.Module):
    """Internal block of a 2D TDSC network."""

    def __init__(
        self,
        in_channels: int,
        img_depth: int,
        kernel_size: Tuple[int],
        dropout_rate: float,
    ) -> None:
        super().__init__()

        self.in_channels = in_channels
        self.img_depth = img_depth
        self.kernel_size = kernel_size
        self.dropout_rate = dropout_rate
        self.fc_dim = in_channels * img_depth

        # Network placeholders.
        self.conv = None
        self.mlp = None
        self.instance_norm = None

        self._build_block()

    def _build_block(self) -> None:
        # Convolutional block.
        self.conv = nn.Sequential(
            nn.Conv3d(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                kernel_size=(1, self.kernel_size[0], self.kernel_size[1]),
                padding=(0, self.kernel_size[0] // 2, self.kernel_size[1] // 2),
            ),
            nn.ReLU(inplace=True),
            nn.Dropout(self.dropout_rate),
        )

        # MLP block.
        self.mlp = nn.Sequential(
            nn.Linear(self.fc_dim, self.fc_dim),
            nn.ReLU(inplace=True),
            nn.Dropout(self.dropout_rate),
            nn.Linear(self.fc_dim, self.fc_dim),
            nn.Dropout(self.dropout_rate),
        )

        # Instance norm.
        self.instance_norm = nn.ModuleList(
            [
                nn.InstanceNorm2d(self.fc_dim, affine=True),
                nn.InstanceNorm2d(self.fc_dim, affine=True),
            ]
        )

    def forward(self, x: Tensor) -> Tensor:
        """Forward pass.

        Args:
            x (Tensor): Input tensor.

        Shape:
            - x: :math: `(B, CD, H, W)`

        Returns:
            Tensor: Output tensor.

        """
        B, CD, H, W = x.shape
        C, D = self.in_channels, self.img_depth
        residual = x
        x = rearrange(x, "b (c d) h w -> b c d h w", c=C, d=D)
        x = self.conv(x)
        x = rearrange(x, "b c d h w -> b (c d) h w")
        x += residual

        x = self.instance_norm[0](x)

        x = self.mlp(x.transpose(1, 3)).transpose(1, 3) + x
        x + self.instance_norm[1](x)

        # Output shape: [B, CD, H, W]
        return x


class TDS2d(nn.Module):
    """TDS Netowrk.

    Structure is the following:
        Downsample layer -> TDS2d group -> ... -> Linear output layer


    """

    def __init__(
        self,
        input_dim: int,
        output_dim: int,
        depth: int,
        tds_groups: Tuple[int],
        kernel_size: Tuple[int],
        dropout_rate: float,
        in_channels: int = 1,
    ) -> None:
        super().__init__()

        self.in_channels = in_channels
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.depth = depth
        self.tds_groups = tds_groups
        self.kernel_size = kernel_size
        self.dropout_rate = dropout_rate

        self.tds = None
        self.fc = None

        self._build_network()

    def _build_network(self) -> None:
        in_channels = self.in_channels
        modules = []
        stride_h = np.prod([grp["stride"][0] for grp in self.tds_groups])
        if self.input_dim % stride_h:
            raise RuntimeError(
                f"Image height not divisible by total stride {stride_h}."
            )

        for tds_group in self.tds_groups:
            # Add downsample layer.
            out_channels = self.depth * tds_group["channels"]
            modules.extend(
                [
                    nn.Conv2d(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        kernel_size=self.kernel_size,
                        padding=(self.kernel_size[0] // 2, self.kernel_size[1] // 2),
                        stride=tds_group["stride"],
                    ),
                    nn.ReLU(inplace=True),
                    nn.Dropout(self.dropout_rate),
                    nn.InstanceNorm2d(out_channels, affine=True),
                ]
            )

            for _ in range(tds_group["num_blocks"]):
                modules.append(
                    TDSBlock2d(
                        tds_group["channels"],
                        self.depth,
                        self.kernel_size,
                        self.dropout_rate,
                    )
                )

            in_channels = out_channels

        self.tds = nn.Sequential(*modules)
        self.fc = nn.Linear(in_channels * self.input_dim // stride_h, self.output_dim)

    def forward(self, x: Tensor) -> Tensor:
        """Forward pass.

        Args:
            x (Tensor): Input tensor.

        Shape:
            - x: :math: `(B, H, W)`

        Returns:
            Tensor: Output tensor.

        """
        if len(x.shape) == 4:
            x = x.squeeze(1)  # Squeeze the channel dim away.

        B, H, W = x.shape
        x = rearrange(
            x, "b (h1 h2) w -> b h1 h2 w", h1=self.in_channels, h2=H // self.in_channels
        )
        x = self.tds(x)

        # x shape: [B, C, H, W]
        x = rearrange(x, "b c h w -> b w (c h)")

        return self.fc(x)