summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/unet.py
blob: eb4188b72d7cfe4038f9ec67e2f9de03fa4d952a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""UNet for segmentation."""
from typing import List, Tuple

import torch
from torch import nn
from torch import Tensor

from text_recognizer.networks.util import activation_function


class ConvBlock(nn.Module):
    """Basic UNet convolutional block."""

    def __init__(self, channels: List[int], activation: str) -> None:
        super().__init__()
        self.channels = channels
        self.activation = activation_function(activation)
        self.block = self._configure_block()

    def _configure_block(self) -> nn.Sequential:
        block = []
        for i in range(len(self.channels) - 1):
            block += [
                nn.Conv2d(
                    self.channels[i], self.channels[i + 1], kernel_size=3, padding=1
                ),
                nn.BatchNorm2d(self.channels[i + 1]),
                self.activation,
            ]

        return nn.Sequential(*block)

    def forward(self, x: Tensor) -> Tensor:
        """Apply the convolutional block."""
        return self.block(x)


class DownSamplingBlock(nn.Module):
    """Basic down sampling block."""

    def __init__(
        self, channels: List[int], activation: str, pooling_kernel: int = 2
    ) -> None:
        super().__init__()
        self.conv_block = ConvBlock(channels, activation)
        self.down_sampling = nn.MaxPool2d(pooling_kernel)

    def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
        """Return the convolutional block output and a down sampled tensor."""
        x = self.conv_block(x)
        return self.down_sampling(x), x


class UpSamplingBlock(nn.Module):
    """The upsampling block of the UNet."""

    def __init__(
        self, channels: List[int], activation: str, scale_factor: int = 2
    ) -> None:
        super().__init__()
        self.conv_block = ConvBlock(channels, activation)
        self.up_sampling = nn.Upsample(
            scale_factor=scale_factor, mode="bilinear", align_corners=True
        )

    def forward(self, x: Tensor, x_skip: Tensor) -> Tensor:
        """Apply the up sampling and convolutional block."""
        x = self.up_sampling(x)
        x = torch.cat((x, x_skip), dim=1)
        return self.conv_block(x)


class UNet(nn.Module):
    """UNet architecture."""

    def __init__(
        self,
        in_channels: int = 1,
        base_channels: int = 64,
        depth: int = 4,
        out_channels: int = 3,
        activation: str = "relu",
        pooling_kernel: int = 2,
        scale_factor: int = 2,
    ) -> None:
        super().__init__()
        channels = [base_channels * 2 ** i for i in range(depth)]
        self.down_sampling_blocks = self._configure_down_sampling_blocks(
            channels, activation, pooling_kernel
        )
        self.up_sampling_blocks = self._configure_up_sampling_blocks(
            channels, activation, scale_factor
        )

    def _configure_down_sampling_blocks(
        self, channels: List[int], activation: str, pooling_kernel: int
    ) -> nn.ModuleList:
        return nn.ModuleList(
            [
                DownSamplingBlock(
                    [channels[i], channels[i + 1], channels[i + 1]],
                    activation,
                    pooling_kernel,
                )
                for i in range(len(channels))
            ]
        )

    def _configure_up_sampling_blocks(
        self,
        channels: List[int],
        activation: str,
        scale_factor: int,
    ) -> nn.ModuleList:
        return nn.ModuleList(
            [
                UpSamplingBlock(
                    [channels[i], channels[i + 1], channels[i + 1]],
                    activation,
                    scale_factor,
                )
            ]
            for i in range(len(channels))
        )

    def down_sampling(self, x: Tensor) -> List[Tensor]:
        x_skips = []
        for block in self.down_sampling_blocks:
            x, x_skip = block(x)
            x_skips.append(x_skip)
        return x, x_skips

    def up_sampling(self, x: Tensor, x_skips: List[Tensor]) -> Tensor:
        pass