summaryrefslogtreecommitdiff
path: root/text_recognizer/callbacks/wandb_callbacks.py
blob: 3936aaf4062629f960d268bf3981d558fdea1936 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""Weights and Biases callbacks."""
from pathlib import Path
from typing import List

import attr
import wandb
from pytorch_lightning import Callback, LightningModule, Trainer
from pytorch_lightning.loggers import LoggerCollection, WandbLogger


def get_wandb_logger(trainer: Trainer) -> WandbLogger:
    """Safely get W&B logger from Trainer."""

    if isinstance(trainer.logger, WandbLogger):
        return trainer.logger

    if isinstance(trainer.logger, LoggerCollection):
        for logger in trainer.logger:
            if isinstance(logger, WandbLogger):
                return logger

    raise Exception("Weight and Biases logger not found for some reason...")


@attr.s
class WatchModel(Callback):
    """Make W&B watch the model at the beginning of the run."""

    log: str = attr.ib(default="gradients")
    log_freq: int = attr.ib(default=100)

    def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Watches model weights with wandb."""
        logger = get_wandb_logger(trainer)
        logger.watch(model=trainer.model, log=self.log, log_freq=self.log_freq)


@attr.s
class UploadCodeAsArtifact(Callback):
    """Upload all *.py files to W&B as an artifact, at the beginning of the run."""

    project_dir: Path = attr.ib(converter=Path)

    def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Uploads project code as an artifact."""
        logger = get_wandb_logger(trainer)
        experiment = logger.experiment
        artifact = wandb.Artifact("project-source", type="code")
        for filepath in self.project_dir.glob("**/*.py"):
            artifact.add_file(filepath)

        experiment.use_artifact(artifact)


@attr.s
class UploadCheckpointAsArtifact(Callback):
    """Upload checkpoint to wandb as an artifact, at the end of a run."""

    ckpt_dir: Path = attr.ib(converter=Path)
    upload_best_only: bool = attr.ib()

    def on_train_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Uploads model checkpoint to W&B."""
        logger = get_wandb_logger(trainer)
        experiment = logger.experiment
        ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints")

        if self.upload_best_only:
            ckpts.add_file(trainer.checkpoint_callback.best_model_path)
        else:
            for ckpt in (self.ckpt_dir).glob("**/*.ckpt"):
                ckpts.add_file(ckpt)

        experiment.use_artifact(ckpts)


@attr.s
class LogTextPredictions(Callback):
    """Logs a validation batch with image to text transcription."""

    num_samples: int = attr.ib(default=8)
    ready: bool = attr.ib(default=True)

    def __attrs_pre_init__(self):
        super().__init__()

    def on_sanity_check_start(
        self, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Sets ready attribute."""
        self.ready = False

    def on_sanity_check_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Start executing this callback only after all validation sanity checks end."""
        self.ready = True

    def on_validation_epoch_end(
        self, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Logs predictions on validation epoch end."""
        if not self.ready:
            return None

        logger = get_wandb_logger(trainer)
        experiment = logger.experiment

        # Get a validation batch from the validation dataloader.
        samples = next(iter(trainer.datamodule.val_dataloader()))
        imgs, labels = samples

        imgs = imgs.to(device=pl_module.device)
        logits = pl_module(imgs)

        mapping = pl_module.mapping
        experiment.log(
            {
                f"Images/{experiment.name}": [
                    wandb.Image(
                        img,
                        caption=f"Pred: {mapping.get_text(pred)}, Label: {mapping.get_text(label)}",
                    )
                    for img, pred, label in zip(
                        imgs[: self.num_samples],
                        logits[: self.num_samples],
                        labels[: self.num_samples],
                    )
                ]
            }
        )