summaryrefslogtreecommitdiff
path: root/text_recognizer/callbacks/wandb_callbacks.py
blob: d9d81f69d562b85ab5f6311541aa5194eda216a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""Weights and Biases callbacks."""
from pathlib import Path
from typing import List

import attr
import wandb
from pytorch_lightning import Callback, LightningModule, Trainer
from pytorch_lightning.loggers import LoggerCollection, WandbLogger


def get_wandb_logger(trainer: Trainer) -> WandbLogger:
    """Safely get W&B logger from Trainer."""

    if isinstance(trainer.logger, WandbLogger):
        return trainer.logger

    if isinstance(trainer.logger, LoggerCollection):
        for logger in trainer.logger:
            if isinstance(logger, WandbLogger):
                return logger

    raise Exception("Weight and Biases logger not found for some reason...")


@attr.s
class WatchModel(Callback):
    """Make W&B watch the model at the beginning of the run."""

    log: str = attr.ib(default="gradients")
    log_freq: int = attr.ib(default=100)

    def __attrs_pre_init__(self) -> None:
        super().__init__()

    def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Watches model weights with wandb."""
        logger = get_wandb_logger(trainer)
        logger.watch(model=trainer.model, log=self.log, log_freq=self.log_freq)


@attr.s
class UploadCodeAsArtifact(Callback):
    """Upload all *.py files to W&B as an artifact, at the beginning of the run."""

    project_dir: Path = attr.ib(converter=Path)

    def __attrs_pre_init__(self) -> None:
        super().__init__()

    def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Uploads project code as an artifact."""
        logger = get_wandb_logger(trainer)
        experiment = logger.experiment
        artifact = wandb.Artifact("project-source", type="code")
        for filepath in self.project_dir.glob("**/*.py"):
            artifact.add_file(filepath)

        experiment.use_artifact(artifact)


@attr.s
class UploadCheckpointAsArtifact(Callback):
    """Upload checkpoint to wandb as an artifact, at the end of a run."""

    ckpt_dir: Path = attr.ib(converter=Path)
    upload_best_only: bool = attr.ib()

    def __attrs_pre_init__(self) -> None:
        super().__init__()

    def on_train_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Uploads model checkpoint to W&B."""
        logger = get_wandb_logger(trainer)
        experiment = logger.experiment
        ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints")

        if self.upload_best_only:
            ckpts.add_file(trainer.checkpoint_callback.best_model_path)
        else:
            for ckpt in (self.ckpt_dir).glob("**/*.ckpt"):
                ckpts.add_file(ckpt)

        experiment.use_artifact(ckpts)


@attr.s
class LogTextPredictions(Callback):
    """Logs a validation batch with image to text transcription."""

    num_samples: int = attr.ib(default=8)
    ready: bool = attr.ib(default=True)

    def __attrs_pre_init__(self) -> None:
        super().__init__()

    def _log_predictions(
        stage: str, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Logs the predicted text contained in the images."""
        if not self.ready:
            return None

        logger = get_wandb_logger(trainer)
        experiment = logger.experiment

        # Get a validation batch from the validation dataloader.
        samples = next(iter(trainer.datamodule.val_dataloader()))
        imgs, labels = samples

        imgs = imgs.to(device=pl_module.device)
        logits = pl_module(imgs)

        mapping = pl_module.mapping
        experiment.log(
            {
                f"OCR/{experiment.name}/{stage}": [
                    wandb.Image(
                        img,
                        caption=f"Pred: {mapping.get_text(pred)}, Label: {mapping.get_text(label)}",
                    )
                    for img, pred, label in zip(
                        imgs[: self.num_samples],
                        logits[: self.num_samples],
                        labels[: self.num_samples],
                    )
                ]
            }
        )

    def on_sanity_check_start(
        self, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Sets ready attribute."""
        self.ready = False

    def on_sanity_check_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Start executing this callback only after all validation sanity checks end."""
        self.ready = True

    def on_validation_epoch_end(
        self, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Logs predictions on validation epoch end."""
        self._log_predictions(stage="val", trainer=trainer, pl_module=pl_module)

    def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Logs predictions on train epoch end."""
        self._log_predictions(stage="test", trainer=trainer, pl_module=pl_module)


@attr.s
class LogReconstuctedImages(Callback):
    """Log reconstructions of images."""

    num_samples: int = attr.ib(default=8)
    ready: bool = attr.ib(default=True)

    def __attrs_pre_init__(self) -> None:
        super().__init__()

    def _log_reconstruction(
        self, stage: str, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Logs the reconstructions."""
        if not self.ready:
            return None

        logger = get_wandb_logger(trainer)
        experiment = logger.experiment

        # Get a validation batch from the validation dataloader.
        samples = next(iter(trainer.datamodule.val_dataloader()))
        imgs, _ = samples

        imgs = imgs.to(device=pl_module.device)
        reconstructions = pl_module(imgs)

        experiment.log(
            {
                f"Reconstructions/{experiment.name}/{stage}": [
                    [
                        wandb.Image(img),
                        wandb.Image(rec),
                    ]
                    for img, rec in zip(
                        imgs[: self.num_samples],
                        reconstructions[: self.num_samples],
                    )
                ]
            }
        )

    def on_sanity_check_start(
        self, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Sets ready attribute."""
        self.ready = False

    def on_sanity_check_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Start executing this callback only after all validation sanity checks end."""
        self.ready = True

    def on_validation_epoch_end(
        self, trainer: Trainer, pl_module: LightningModule
    ) -> None:
        """Logs predictions on validation epoch end."""
        self._log_reconstruction(stage="val", trainer=trainer, pl_module=pl_module)

    def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
        """Logs predictions on train epoch end."""
        self._log_reconstruction(stage="test", trainer=trainer, pl_module=pl_module)