blob: cc71c45cc6102d2b9f8ae326a6cbe0222aa72b8e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
"""Implementations of custom loss functions."""
import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F
class LabelSmoothingLoss(nn.Module):
def __init__(self, ignore_index: int = -100, smoothing: float = 0.0, dim: int = -1):
super().__init__()
assert 0.0 < smoothing <= 1.0
self.ignore_index = ignore_index
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.dim = dim
def forward(self, output: Tensor, target: Tensor) -> Tensor:
"""Computes the loss.
Args:
output (Tensor): outputictions from the network.
targets (Tensor): Ground truth.
Shapes:
TBC
Returns:
Tensor: Label smoothing loss.
"""
output = output.log_softmax(dim=self.dim)
with torch.no_grad():
true_dist = torch.zeros_like(output)
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
true_dist.masked_fill_((target == 4).unsqueeze(1), 0)
true_dist += self.smoothing / output.size(self.dim)
return torch.mean(torch.sum(-true_dist * output, dim=self.dim))
|