1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
"""Implementations of custom loss functions."""
import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F
class LabelSmoothingLoss(nn.Module):
"""Label smoothing cross entropy loss."""
def __init__(
self, label_smoothing: float, vocab_size: int, ignore_index: int = -100
) -> None:
assert 0.0 < label_smoothing <= 1.0
self.ignore_index = ignore_index
super().__init__()
smoothing_value = label_smoothing / (vocab_size - 2)
one_hot = torch.full((vocab_size,), smoothing_value)
one_hot[self.ignore_index] = 0
self.register_buffer("one_hot", one_hot.unsqueeze(0))
self.confidence = 1.0 - label_smoothing
def forward(self, output: Tensor, targets: Tensor) -> Tensor:
"""Computes the loss.
Args:
output (Tensor): Predictions from the network.
targets (Tensor): Ground truth.
Shapes:
outpus: Batch size x num classes
targets: Batch size
Returns:
Tensor: Label smoothing loss.
"""
model_prob = self.one_hot.repeat(targets.size(0), 1)
model_prob.scatter_(1, targets.unsqueeze(1), self.confidence)
model_prob.masked_fill_((targets == self.ignore_index).unsqueeze(1), 0)
return F.kl_div(output, model_prob, reduction="sum")
|