1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
"""VQGAN loss for PyTorch Lightning."""
from typing import Dict
from click.types import Tuple
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from text_recognizer.criterions.n_layer_discriminator import NLayerDiscriminator
class VQGANLoss(nn.Module):
"""VQGAN loss."""
def __init__(
self,
reconstruction_loss: nn.L1Loss,
discriminator: NLayerDiscriminator,
vq_loss_weight: float = 1.0,
discriminator_weight: float = 1.0,
) -> None:
super().__init__()
self.reconstruction_loss = reconstruction_loss
self.discriminator = discriminator
self.vq_loss_weight = vq_loss_weight
self.discriminator_weight = discriminator_weight
@staticmethod
def adversarial_loss(logits_real: Tensor, logits_fake: Tensor) -> Tensor:
"""Calculates the adversarial loss."""
loss_real = torch.mean(F.relu(1.0 - logits_real))
loss_fake = torch.mean(F.relu(1.0 + logits_fake))
d_loss = (loss_real + loss_fake) / 2.0
return d_loss
def forward(
self,
data: Tensor,
reconstructions: Tensor,
vq_loss: Tensor,
optimizer_idx: int,
stage: str,
) -> Tuple[Tensor, Dict[str, Tensor]]:
"""Calculates the VQGAN loss."""
rec_loss = self.reconstruction_loss(
data.contiguous(), reconstructions.contiguous()
)
# GAN part.
if optimizer_idx == 0:
logits_fake = self.discriminator(reconstructions.contiguous())
g_loss = -torch.mean(logits_fake)
loss = (
rec_loss
+ self.discriminator_weight * g_loss
+ self.vq_loss_weight * vq_loss
)
log = {
f"{stage}/loss": loss,
f"{stage}/vq_loss": vq_loss,
f"{stage}/rec_loss": rec_loss,
f"{stage}/g_loss": g_loss,
}
return loss, log
if optimizer_idx == 1:
logits_fake = self.discriminator(reconstructions.contiguous().detach())
logits_real = self.discriminator(data.contiguous().detach())
d_loss = self.adversarial_loss(
logits_real=logits_real, logits_fake=logits_fake
)
loss = (
rec_loss
+ self.discriminator_weight * d_loss
+ self.vq_loss_weight * vq_loss
)
log = {
f"{stage}/loss": loss,
f"{stage}/vq_loss": vq_loss,
f"{stage}/rec_loss": rec_loss,
f"{stage}/d_loss": d_loss,
}
return loss, log
|