summaryrefslogtreecommitdiff
path: root/text_recognizer/data/base_data_module.py
blob: 6efa4fb3c42ffa287914f1714ab02c6a6439bed7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""Base lightning DataModule class."""
from typing import Callable, Dict, Optional, Tuple, TypeVar

import pytorch_lightning as L
from torch.utils.data import DataLoader

from text_recognizer.data.base_dataset import BaseDataset
from text_recognizer.data.tokenizer import Tokenizer

T = TypeVar("T")


def load_and_print_info(data_module_class: type) -> None:
    """Load dataset and print dataset information."""
    dataset = data_module_class()
    dataset.prepare_data()
    dataset.setup()
    print(dataset)


class BaseDataModule(L.LightningDataModule):
    """Base PyTorch Lightning DataModule."""

    def __init__(
        self,
        tokenizer: Tokenizer,
        transform: Optional[Callable] = None,
        test_transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        train_fraction: float = 0.8,
        batch_size: int = 16,
        num_workers: int = 0,
        pin_memory: bool = True,
    ) -> None:
        super().__init__()
        self.tokenizer = tokenizer
        self.transform = transform
        self.test_transform = test_transform
        self.target_transform = target_transform
        self.train_fraction = train_fraction
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.pin_memory = pin_memory

        # Placeholders
        self.data_train: BaseDataset = None
        self.data_val: BaseDataset = None
        self.data_test: BaseDataset = None
        self.dims: Tuple[int, ...] = None
        self.output_dims: Tuple[int, ...] = None

    def config(self) -> Dict:
        """Return important settings of the dataset."""
        return {
            "input_dim": self.dims,
            "output_dims": self.output_dims,
        }

    def prepare_data(self) -> None:
        """Prepare data for training."""
        pass

    def setup(self, stage: Optional[str] = None) -> None:
        """Split into train, val, test, and set dims.

        Should assign `torch Dataset` objects to self.data_train, self.data_val, and
            optionally self.data_test.

        Args:
            stage (Optional[str]): Variable to set splits.

        """
        pass

    def train_dataloader(self) -> DataLoader:
        """Retun DataLoader for train data."""
        return DataLoader(
            self.data_train,
            shuffle=True,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
        )

    def val_dataloader(self) -> DataLoader:
        """Return DataLoader for val data."""
        return DataLoader(
            self.data_val,
            shuffle=False,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
        )

    def test_dataloader(self) -> DataLoader:
        """Return DataLoader for val data."""
        return DataLoader(
            self.data_test,
            shuffle=False,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
        )