1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
"""Emnist mapping."""
import json
from pathlib import Path
from typing import Dict, List, Optional, Sequence, Tuple, Union
import torch
from torch import Tensor
import text_recognizer.metadata.shared as metadata
class Tokenizer:
"""Mapping for EMNIST labels."""
def __init__(
self,
extra_symbols: Optional[Sequence[str]] = None,
lower: bool = True,
start_token: str = "<s>",
end_token: str = "<e>",
pad_token: str = "<p>",
) -> None:
self.extra_symbols = set(extra_symbols) if extra_symbols is not None else None
self.mapping, self.inverse_mapping, self.input_size = self._load_mapping()
self.start_token = start_token
self.end_token = end_token
self.pad_token = pad_token
self.start_index = int(self.get_value(self.start_token))
self.end_index = int(self.get_value(self.end_token))
self.pad_index = int(self.get_value(self.pad_token))
self.ignore_indices = set([self.start_index, self.end_index, self.pad_index])
if lower:
self._to_lower()
def __len__(self) -> int:
return len(self.mapping)
@property
def num_classes(self) -> int:
"""Return number of classes in the dataset."""
return self.__len__()
def _load_mapping(self) -> Tuple[List, Dict[str, int], List[int]]:
"""Return the EMNIST mapping."""
with metadata.ESSENTIALS_FILENAME.open() as f:
essentials = json.load(f)
mapping = list(essentials["characters"])
if self.extra_symbols is not None:
mapping += self.extra_symbols
inverse_mapping = {v: k for k, v in enumerate(mapping)}
input_shape = essentials["input_shape"]
return mapping, inverse_mapping, input_shape
def _to_lower(self) -> None:
"""Converts mapping to lowercase letters only."""
def _filter(x: int) -> int:
if 40 <= x:
return x - 26
return x
self.inverse_mapping = {v: _filter(k) for k, v in enumerate(self.mapping)}
self.mapping = [c for c in self.mapping if not c.isupper()]
def get_token(self, index: Union[int, Tensor]) -> str:
"""Returns token for index value."""
if (index := int(index)) <= len(self.mapping):
return self.mapping[index]
raise KeyError(f"Index ({index}) not in mapping.")
def get_value(self, token: str) -> Tensor:
"""Returns index value of token."""
if token in self.inverse_mapping:
return torch.LongTensor([self.inverse_mapping[token]])
raise KeyError(f"Token ({token}) not found in inverse mapping.")
def decode(self, indices: Union[List[int], Tensor]) -> str:
"""Returns the text from a list of indices."""
if isinstance(indices, Tensor):
indices = indices.tolist()
return "".join(
[
self.mapping[index]
for index in indices
if index not in self.ignore_indices
]
)
def encode(self, text: str) -> Tensor:
"""Returns tensor of indices for a string."""
return Tensor([self.inverse_mapping[token] for token in text])
def __getitem__(self, x: Union[int, Tensor]) -> str:
"""Returns text for a list of indices."""
return self.get_token(x)
|