summaryrefslogtreecommitdiff
path: root/text_recognizer/model/mammut.py
blob: 320f228bf4d613b4212cf4904a9297edd466dd74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""Lightning model for transformer networks."""
from typing import Callable, Optional, Tuple, Type

import torch
import torch.nn.functional as F
from einops import rearrange
from omegaconf import DictConfig
from torch import Tensor, einsum, nn
from torchmetrics import CharErrorRate, WordErrorRate

from text_recognizer.data.tokenizer import Tokenizer
from text_recognizer.decoder.greedy_decoder import GreedyDecoder
from text_recognizer.network.mammut import MaMMUT

from .base import LitBase


class LitMaMMUT(LitBase):
    def __init__(
        self,
        network: MaMMUT,
        loss_fn: Type[nn.Module],
        optimizer_config: DictConfig,
        tokenizer: Tokenizer,
        decoder: Callable = GreedyDecoder,
        lr_scheduler_config: Optional[DictConfig] = None,
        max_output_len: int = 682,
        caption_loss_weight=1.0,
        contrastive_loss_weight=1.0,
    ) -> None:
        super().__init__(
            network,
            loss_fn,
            optimizer_config,
            lr_scheduler_config,
            tokenizer,
        )
        self.max_output_len = max_output_len
        self.val_cer = CharErrorRate()
        self.test_cer = CharErrorRate()
        self.val_wer = WordErrorRate()
        self.test_wer = WordErrorRate()
        self.decoder = decoder
        self.contrastive_loss = F.cross_entropy
        self.caption_loss_weight = caption_loss_weight
        self.contrastive_loss_weight = contrastive_loss_weight
        self.temperature = nn.Parameter(Tensor([1.0]))

    def forward(self, data: Tensor) -> Tensor:
        """Autoregressive forward pass."""
        return self.predict(data)

    def to_caption_loss(self, logits: Tensor, labels: Tensor) -> Tensor:
        caption_loss = self.loss_fn(logits, labels)
        return self.caption_loss_weight * caption_loss

    def to_contrastive_loss(
        self, image_embeddings: Tensor, text_embeddings: Tensor
    ) -> Tensor:
        b, device = image_embeddings.shape[0], image_embeddings.device
        image_latents, text_latents = self.network.to_latents(
            image_embeddings, text_embeddings
        )
        sim = einsum("i d, j d -> i j", text_latents, image_latents)
        sim = sim * self.temperature.exp()
        contrastive_labels = torch.arange(b, device=device)
        contrastive_loss = (
            F.cross_entropy(sim, contrastive_labels)
            + F.cross_entropy(sim.t(), contrastive_labels)
        ) / 2
        return self.contrastive_loss_weight * contrastive_loss

    def teacher_forward(self, images: Tensor, tagets: Tensor) -> Tuple[Tensor, Tensor]:
        """Non-autoregressive forward pass."""
        text, labels = tagets[:, :-1], tagets[:, 1:]
        text_embeddings = self.network.to_text_cls_features(text)
        image_embeddings, image_features = self.network.to_image_features(images)
        logits = self.network.decode(text, image_features)
        logits = rearrange(logits, "b n c -> b c n")

        caption_loss = self.to_caption_loss(logits, labels)
        contrastive_loss = self.to_contrastive_loss(image_embeddings, text_embeddings)

        self.log("train/caption_loss", caption_loss)
        self.log("train/contrastive_loss", contrastive_loss)

        return logits, caption_loss + contrastive_loss

    def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> dict:
        """Training step."""
        data, targets = batch
        logits, loss = self.teacher_forward(data, targets)
        self.log("train/loss", loss, prog_bar=True)
        outputs = {"loss": loss}
        if self.is_logged_batch():
            preds, gts = self.tokenizer.decode_logits(
                logits
            ), self.tokenizer.batch_decode(targets)
            outputs.update({"predictions": preds, "ground_truths": gts})
        return outputs

    def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> dict:
        """Validation step."""
        data, targets = batch
        preds = self(data)
        preds, gts = self.tokenizer.batch_decode(preds), self.tokenizer.batch_decode(
            targets
        )
        self.val_cer(preds, gts)
        self.val_wer(preds, gts)
        self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
        self.log("val/wer", self.val_wer, on_step=False, on_epoch=True, prog_bar=True)
        outputs = {}
        self.add_on_first_batch(
            {"predictions": preds, "ground_truths": gts}, outputs, batch_idx
        )
        return outputs

    def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> dict:
        """Test step."""
        data, targets = batch
        preds = self(data)
        preds, gts = self.tokenizer.batch_decode(preds), self.tokenizer.batch_decode(
            targets
        )
        self.test_cer(preds, gts)
        self.test_wer(preds, gts)
        self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True)
        self.log("test/wer", self.test_wer, on_step=False, on_epoch=True, prog_bar=True)
        outputs = {}
        self.add_on_first_batch(
            {"predictions": preds, "ground_truths": gts}, outputs, batch_idx
        )
        return outputs

    @torch.no_grad()
    def predict(self, x: Tensor) -> Tensor:
        return self.decoder(x)