1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
"""Base PyTorch Lightning model."""
from typing import Any, Dict, List, Optional, Tuple, Type
import hydra
from loguru import logger as log
from omegaconf import DictConfig
from pytorch_lightning import LightningModule
import torch
from torch import nn
from torch import Tensor
from torchmetrics import Accuracy
from text_recognizer.data.mappings.base import AbstractMapping
class LitBase(LightningModule):
"""Abstract PyTorch Lightning class."""
def __init__(
self,
network: Type[nn.Module],
loss_fn: Type[nn.Module],
optimizer_configs: DictConfig,
lr_scheduler_configs: Optional[DictConfig],
mapping: Type[AbstractMapping],
) -> None:
super().__init__()
self.network = network
self.loss_fn = loss_fn
self.optimizer_configs = optimizer_configs
self.lr_scheduler_configs = lr_scheduler_configs
self.mapping = mapping
# Placeholders
self.train_acc = Accuracy()
self.val_acc = Accuracy()
self.test_acc = Accuracy()
def optimizer_zero_grad(
self,
epoch: int,
batch_idx: int,
optimizer: Type[torch.optim.Optimizer],
optimizer_idx: int,
) -> None:
"""Optimal way to set grads to zero."""
optimizer.zero_grad(set_to_none=True)
def _configure_optimizer(self) -> List[Type[torch.optim.Optimizer]]:
"""Configures the optimizer."""
optimizers = []
for optimizer_config in self.optimizer_configs.values():
module = self
for m in str(optimizer_config.parameters).split("."):
module = getattr(module, m)
del optimizer_config.parameters
log.info(f"Instantiating optimizer <{optimizer_config._target_}>")
optimizers.append(
hydra.utils.instantiate(optimizer_config, params=module.parameters())
)
return optimizers
def _configure_lr_schedulers(
self, optimizers: List[Type[torch.optim.Optimizer]]
) -> List[Dict[str, Any]]:
"""Configures the lr scheduler."""
if self.lr_scheduler_configs is None:
return []
schedulers = []
for optimizer, lr_scheduler_config in zip(
optimizers, self.lr_scheduler_configs.values()
):
# Extract non-class arguments.
monitor = lr_scheduler_config.monitor
interval = lr_scheduler_config.interval
del lr_scheduler_config.monitor
del lr_scheduler_config.interval
log.info(
f"Instantiating learning rate scheduler <{lr_scheduler_config._target_}>"
)
scheduler = {
"monitor": monitor,
"interval": interval,
"scheduler": hydra.utils.instantiate(
lr_scheduler_config, optimizer=optimizer
),
}
schedulers.append(scheduler)
return schedulers
def configure_optimizers(
self,
) -> Tuple[List[Type[torch.optim.Optimizer]], List[Dict[str, Any]]]:
"""Configures optimizer and lr scheduler."""
optimizers = self._configure_optimizer()
schedulers = self._configure_lr_schedulers(optimizers)
return optimizers, schedulers
def forward(self, data: Tensor) -> Tensor:
"""Feedforward pass."""
return self.network(data)
def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
"""Training step."""
pass
def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
"""Validation step."""
pass
def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
"""Test step."""
pass
|