1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
"""Implements the attention module for the transformer."""
from typing import Optional
from text_recognizer.network.transformer.norm import RMSNorm
from text_recognizer.network.transformer.attend import Attend
import torch
from einops import rearrange
from torch import Tensor, nn
class Attention(nn.Module):
"""Standard attention."""
def __init__(
self,
dim: int,
heads: int,
causal: bool = False,
dim_head: int = 64,
dropout_rate: float = 0.0,
use_flash: bool = True,
) -> None:
super().__init__()
self.heads = heads
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_k = nn.Linear(dim, inner_dim, bias=False)
self.to_v = nn.Linear(dim, inner_dim, bias=False)
# self.q_norm = RMSNorm(heads, dim_head)
# self.k_norm = RMSNorm(heads, dim_head)
self.attend = Attend(use_flash)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
self.scale = dim**-0.5
self.causal = causal
self.dropout_rate = dropout_rate
self.dropout = nn.Dropout(p=self.dropout_rate)
def forward(
self,
x: Tensor,
context: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
) -> Tensor:
"""Computes the attention."""
x = self.norm(x)
q = self.to_q(x)
k = self.to_k(x if context is None else context)
v = self.to_v(x if context is None else context)
q, k, v = map(
lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), (q, k, v)
)
out = self.attend(q, k, v, self.causal, mask)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out(out)
return out
|