blob: db3415738e842368c9abf1b7e64de5f7b7ebfea6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
from typing import Optional
import torch
from torch import nn, Tensor
from .l2_norm import l2_norm
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim: int, max_length: int, use_l2: bool = False) -> None:
super().__init__()
self.scale = dim**-0.5 if not use_l2 else 1.0
self.max_length = max_length
self.use_l2 = use_l2
self.to_embedding = nn.Embedding(max_length, dim)
if self.use_l2:
nn.init.normal_(self.to_embedding.weight, std=1e-5)
def forward(self, x: Tensor, pos: Optional[Tensor] = None) -> Tensor:
n, device = x.shape[1], x.device
assert (
n <= self.max_length
), f"Sequence length {n} is greater than the maximum positional embedding {self.max_length}"
if pos is None:
pos = torch.arange(n, device=device)
embedding = self.to_embedding(pos) * self.scale
return l2_norm(embedding) if self.use_l2 else embedding
|