1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
"""Conformer module."""
from copy import deepcopy
from typing import Type
from torch import nn, Tensor
from text_recognizer.networks.conformer.block import ConformerBlock
class Conformer(nn.Module):
def __init__(
self,
dim: int,
dim_gru: int,
num_classes: int,
subsampler: Type[nn.Module],
block: ConformerBlock,
depth: int,
) -> None:
super().__init__()
self.subsampler = subsampler
self.blocks = nn.ModuleList([deepcopy(block) for _ in range(depth)])
self.gru = nn.GRU(
dim, dim_gru, 1, bidirectional=True, batch_first=True, bias=False
)
self.fc = nn.Linear(dim_gru, num_classes)
def forward(self, x: Tensor) -> Tensor:
x = self.subsampler(x)
B, T, C = x.shape
for fn in self.blocks:
x = fn(x)
x, _ = self.gru(x)
x = x.view(B, T, 2, -1).sum(2)
return self.fc(x)
|