blob: 8d0e98ef5fd72700fea14d38fd7e5485c1761043 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
"""Conformer module."""
from copy import deepcopy
from typing import Type
from torch import nn, Tensor
from text_recognizer.networks.conformer.block import ConformerBlock
class Conformer(nn.Module):
def __init__(
self,
subsampler: Type[nn.Module],
block: ConformerBlock,
depth: int,
) -> None:
super().__init__()
self.subsampler = subsampler
self.blocks = nn.ModuleList([deepcopy(block) for _ in range(depth)])
def forward(self, x: Tensor) -> Tensor:
x = self.subsampler(x)
for fn in self.blocks:
x = fn(x)
return x
|