1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
"""Perceiver network module."""
from typing import Optional, Tuple, Type
from torch import nn, Tensor
from text_recognizer.networks.perceiver.perceiver import PerceiverIO
from text_recognizer.networks.transformer.embeddings.axial import (
AxialPositionalEmbedding,
)
class ConvPerceiver(nn.Module):
"""Base transformer network."""
def __init__(
self,
input_dims: Tuple[int, int, int],
hidden_dim: int,
queries_dim: int,
num_classes: int,
pad_index: Tensor,
encoder: Type[nn.Module],
decoder: PerceiverIO,
max_length: int,
pixel_embedding: AxialPositionalEmbedding,
) -> None:
super().__init__()
self.input_dims = input_dims
self.hidden_dim = hidden_dim
self.num_classes = num_classes
self.pad_index = pad_index
self.max_length = max_length
self.encoder = encoder
self.decoder = decoder
self.pixel_embedding = pixel_embedding
self.to_queries = nn.Linear(self.hidden_dim, queries_dim)
self.conv = nn.Conv2d(
in_channels=self.encoder.out_channels,
out_channels=self.hidden_dim,
kernel_size=1,
)
def encode(self, x: Tensor) -> Tensor:
z = self.encoder(x)
z = self.conv(z)
z = self.pixel_embedding(z)
z = z.flatten(start_dim=2)
# Permute tensor from [B, E, Ho * Wo] to [B, Sx, E]
z = z.permute(0, 2, 1)
return z
def decode(self, z: Tensor) -> Tensor:
queries = self.to_queries(z[:, : self.max_length, :])
logits = self.decoder(data=z, queries=queries)
logits = logits.permute(0, 2, 1) # [B, C, Sy]
return logits
def forward(self, x: Tensor) -> Tensor:
z = self.encode(x)
logits = self.decode(z)
return logits
|