1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
"""Vision transformer for character recognition."""
import math
from typing import Optional, Tuple, Type
from loguru import logger as log
from torch import nn, Tensor
from text_recognizer.networks.base import BaseTransformer
from text_recognizer.networks.transformer.decoder import Decoder
from text_recognizer.networks.transformer.embeddings.axial import (
AxialPositionalEmbedding,
)
class ConvTransformer(BaseTransformer):
"""Convolutional encoder and transformer decoder network."""
def __init__(
self,
input_dims: Tuple[int, int, int],
hidden_dim: int,
num_classes: int,
pad_index: Tensor,
encoder: Type[nn.Module],
decoder: Decoder,
pixel_pos_embedding: AxialPositionalEmbedding,
token_pos_embedding: Optional[Type[nn.Module]] = None,
) -> None:
super().__init__(
input_dims,
hidden_dim,
num_classes,
pad_index,
encoder,
decoder,
token_pos_embedding,
)
self.pixel_pos_embedding = pixel_pos_embedding
# Latent projector for down sampling number of filters and 2d
# positional encoding.
self.conv = nn.Conv2d(
in_channels=self.encoder.out_channels,
out_channels=self.hidden_dim,
kernel_size=1,
)
# Initalize weights for encoder.
self.init_weights()
def init_weights(self) -> None:
"""Initalize weights for decoder network and to_logits."""
bound = 0.1
self.token_embedding.weight.data.uniform_(-bound, bound)
self.to_logits.bias.data.zero_()
self.to_logits.weight.data.uniform_(-bound, bound)
def encode(self, x: Tensor) -> Tensor:
"""Encodes an image into a latent feature vector.
Args:
x (Tensor): Image tensor.
Shape:
- x: :math: `(B, C, H, W)`
- z: :math: `(B, Sx, E)`
where Sx is the length of the flattened feature maps projected from
the encoder. E latent dimension for each pixel in the projected
feature maps.
Returns:
Tensor: A Latent embedding of the image.
"""
z = self.encoder(x)
z = self.conv(z)
z = self.pixel_pos_embedding(z)
z = z.flatten(start_dim=2)
# Permute tensor from [B, E, Ho * Wo] to [B, Sx, E]
z = z.permute(0, 2, 1)
return z
|