1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
"""Base network module."""
from typing import Optional, Tuple, Type
import torch
from torch import Tensor, nn
from text_recognizer.networks.transformer.decoder import Decoder
from text_recognizer.networks.transformer.embeddings.axial import (
AxialPositionalEmbeddingImage,
)
class ConvTransformer(nn.Module):
"""Base transformer network."""
def __init__(
self,
input_dims: Tuple[int, int, int],
hidden_dim: int,
num_classes: int,
pad_index: Tensor,
encoder: Type[nn.Module],
decoder: Decoder,
pixel_embedding: AxialPositionalEmbeddingImage,
token_pos_embedding: Type[nn.Module],
) -> None:
super().__init__()
self.input_dims = input_dims
self.hidden_dim = hidden_dim
self.num_classes = num_classes
self.pad_index = pad_index
self.encoder = encoder
self.decoder = decoder
# Token embedding.
self.token_embedding = nn.Embedding(
num_embeddings=self.num_classes, embedding_dim=self.hidden_dim
)
# Positional encoding for decoder tokens.
self.token_pos_embedding = token_pos_embedding
self.pixel_embedding = pixel_embedding
# Latent projector for down sampling number of filters and 2d
# positional encoding.
self.conv = nn.Conv2d(
in_channels=self.encoder.out_channels,
out_channels=self.hidden_dim,
kernel_size=1,
)
# Output layer
self.to_logits = nn.Linear(
in_features=self.hidden_dim, out_features=self.num_classes
)
# Initalize weights for encoder.
self.init_weights()
def init_weights(self) -> None:
"""Initalize weights for decoder network and to_logits."""
nn.init.kaiming_normal_(self.token_embedding.weight)
def encode(self, x: Tensor) -> Tensor:
"""Encodes an image into a latent feature vector.
Args:
x (Tensor): Image tensor.
Shape:
- x: :math: `(B, C, H, W)`
- z: :math: `(B, Sx, E)`
where Sx is the length of the flattened feature maps projected from
the encoder. E latent dimension for each pixel in the projected
feature maps.
Returns:
Tensor: A Latent embedding of the image.
"""
z = self.encoder(x)
z = self.conv(z)
z = z + self.pixel_embedding(z)
z = z.flatten(start_dim=2)
# Permute tensor from [B, E, Ho * Wo] to [B, Sx, E]
z = z.permute(0, 2, 1)
return z
def decode(self, src: Tensor, trg: Tensor) -> Tensor:
"""Decodes latent images embedding into word pieces.
Args:
src (Tensor): Latent images embedding.
trg (Tensor): Word embeddings.
Shapes:
- z: :math: `(B, Sx, D)`
- context: :math: `(B, Sy)`
- out: :math: `(B, Sy, C)`
where Sy is the length of the output and C is the number of classes.
Returns:
Tensor: Sequence of word piece embeddings.
"""
trg = trg.long()
trg_mask = trg != self.pad_index
trg = self.token_embedding(trg)
trg = trg + self.token_pos_embedding(trg)
out = self.decoder(x=trg, context=src, input_mask=trg_mask)
logits = (
out @ torch.transpose(self.token_embedding.weight.to(trg.dtype), 0, 1)
).float()
logits = self.to_logits(out) # [B, Sy, C]
logits = logits.permute(0, 2, 1) # [B, C, Sy]
return logits
def forward(self, x: Tensor, context: Tensor) -> Tensor:
"""Encodes images into word piece logtis.
Args:
x (Tensor): Input image(s).
context (Tensor): Target word embeddings.
Shapes:
- x: :math: `(B, D, H, W)`
- context: :math: `(B, Sy, C)`
where B is the batch size, D is the number of input channels, H is
the image height, W is the image width, and C is the number of classes.
Returns:
Tensor: Sequence of logits.
"""
z = self.encode(x)
logits = self.decode(z, context)
return logits
|