1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
"""Perceiver IO.
A copy from lucidrains.
"""
from typing import Optional
from einops import repeat, rearrange
import torch
from torch import nn, Tensor
from text_recognizer.networks.perceiver.attention import Attention
from text_recognizer.networks.transformer.ff import FeedForward
from text_recognizer.networks.transformer.norm import PreNorm
class PerceiverIO(nn.Module):
def __init__(
self,
dim: int,
cross_heads: int,
cross_head_dim: int,
num_latents: int,
latent_dim: int,
latent_heads: int,
depth: int,
queries_dim: int,
logits_dim: int,
) -> None:
super().__init__()
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
self.cross_attn_block = nn.ModuleList(
[
PreNorm(
latent_dim,
Attention(
latent_dim, dim, heads=cross_heads, dim_head=cross_head_dim
),
context_dim=dim,
),
PreNorm(latent_dim, FeedForward(latent_dim)),
]
)
self.layers = nn.ModuleList(
[
nn.ModuleList(
[
PreNorm(
latent_dim,
Attention(
latent_dim, heads=latent_heads, dim_head=latent_dim
),
),
PreNorm(latent_dim, FeedForward(latent_dim)),
]
)
for _ in range(depth)
]
)
self.decoder_cross_attn = PreNorm(
queries_dim,
Attention(
queries_dim, latent_dim, heads=cross_heads, dim_head=cross_head_dim
),
context_dim=latent_dim,
)
self.decoder_ff = PreNorm(queries_dim, FeedForward(queries_dim))
self.to_logits = nn.Linear(queries_dim, logits_dim)
def forward(self, data: Tensor, queries: Tensor) -> Tensor:
b = data.shape[0]
x = repeat(self.latents, "n d -> b n d", b=b)
cross_attn, cross_ff = self.cross_attn_block
x = cross_attn(x, context=data) + x
x = cross_ff(x) + x
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
if queries.ndim == 2:
queries = repeat(queries, "nd->bnd", b=b)
latents = self.decoder_cross_attn(queries, context=x)
latents = latents + self.decoder_ff(latents)
return self.to_logits(latents)
|