1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
"""K-means clustering for embeddings."""
from typing import Tuple
from einops import repeat
import torch
from torch import Tensor
from text_recognizer.networks.quantizer.utils import norm, sample_vectors
def kmeans(
samples: Tensor, num_clusters: int, num_iters: int = 10
) -> Tuple[Tensor, Tensor]:
"""Compute k-means clusters."""
D = samples.shape[-1]
means = sample_vectors(samples, num_clusters)
for _ in range(num_iters):
dists = samples @ means.t()
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, D).type_as(samples)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=D), samples)
new_means /= bins_min_clamped[..., None]
new_means = norm(new_means)
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
|