1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
"""Axial attention for multi-dimensional data.
Stolen from:
https://github.com/lucidrains/axial-attention/blob/
eff2c10c2e76c735a70a6b995b571213adffbbb7/axial_attention/axial_attention.py#L100
"""
from functools import reduce
from operator import mul
from typing import Optional, Sequence
import torch
from torch import Tensor, nn
class AxialPositionalEmbedding(nn.Module):
def __init__(
self,
dim: int,
axial_shape: Sequence[int],
axial_dims: Optional[Sequence[int]] = None,
) -> None:
super().__init__()
self.dim = dim
self.shape = axial_shape
self.max_seq_len = reduce(mul, axial_shape, 1)
self.summed = axial_dims is None
axial_dims = ((dim,) * len(axial_shape)) if self.summed else axial_dims
assert len(self.shape) == len(
axial_dims
), "number of axial dimensions must equal the number of dimensions in the shape"
assert (
self.summed or not self.summed and sum(axial_dims) == dim
), f"axial dimensions must sum up to the target dimension {dim}"
self.weights = ParameterList(self, "weights", len(axial_shape))
for ind, (shape, axial_dim) in enumerate(zip(self.shape, axial_dims)):
ax_shape = [1] * len(self.shape)
ax_shape[ind] = shape
ax_shape = (1, *ax_shape, axial_dim)
ax_emb = nn.Parameter(torch.zeros(ax_shape).normal_(0, 1))
self.weights.append(ax_emb)
def forward(self, x: Tensor) -> Tensor:
"""Returns axial positional embedding."""
b, t, _ = x.shape
assert (
t <= self.max_seq_len
), f"Sequence length ({t}) must be less than the maximum sequence length allowed ({self.max_seq_len})"
embs = []
for ax_emb in self.weights.to_list():
axial_dim = ax_emb.shape[-1]
expand_shape = (b, *self.shape, axial_dim)
emb = ax_emb.expand(expand_shape).reshape(b, self.max_seq_len, axial_dim)
embs.append(emb)
pos_emb = sum(embs) if self.summed else torch.cat(embs, dim=-1)
return pos_emb[:, :t].to(x)
# a mock parameter list object until below issue is resolved
# https://github.com/pytorch/pytorch/issues/36035
class ParameterList(object):
def __init__(self, kls, prefix, length):
self.ind = 0
self.kls = kls
self.prefix = prefix
self.length = length
def _keyname(self, prefix, ind):
return f"{prefix}_{ind}"
def append(self, x):
setattr(self.kls, self._keyname(self.prefix, self.ind), x)
self.ind += 1
def to_list(self):
return [
getattr(self.kls, self._keyname(self.prefix, i)) for i in range(self.length)
]
class AxialPositionalEmbeddingImage(nn.Module):
def __init__(
self,
dim: int,
axial_shape: Sequence[int],
axial_dims: Optional[Sequence[int]] = None,
) -> None:
super().__init__()
axial_dims = (dim // 2, dim // 2) if axial_dims is None else axial_dims
assert len(axial_shape) == 2, "Axial shape must have 2 dimensions for images"
self.dim = dim
self.pos_emb = AxialPositionalEmbedding(dim, axial_shape, axial_dims)
def forward(self, img):
b, c, h, w = img.shape
img = img.permute(0, 2, 3, 1).reshape(b, h * w, c)
pos_emb = self.pos_emb(img)
return pos_emb.reshape(b, h, w, self.dim).permute(0, 3, 1, 2)
|