1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
"""Fourier positional embedding."""
import numpy as np
import torch
from torch import nn
from torch import Tensor
class PositionalEncoding(nn.Module):
"""Encodes a sense of distance or time for transformer networks."""
def __init__(
self, hidden_dim: int, dropout_rate: float, max_len: int = 1000
) -> None:
super().__init__()
self.dropout = nn.Dropout(p=dropout_rate)
pe = self.make_pe(hidden_dim, max_len)
self.register_buffer("pe", pe)
@staticmethod
def make_pe(hidden_dim: int, max_len: int) -> Tensor:
"""Returns positional encoding."""
pe = torch.zeros(max_len, hidden_dim)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, hidden_dim, 2).float() * (-np.log(10000.0) / hidden_dim)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(1)
return pe
def forward(self, x: Tensor) -> Tensor:
"""Encodes the tensor with a postional embedding."""
# [T, B, D]
if x.shape[2] != self.pe.shape[2]:
raise ValueError("x shape does not match pe in the 3rd dim.")
x = x + self.pe[: x.shape[0]]
return self.dropout(x)
|