1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
from typing import Optional, Tuple, Type
from torch import nn, Tensor
from text_recognizer.networks.transformer.decoder import Decoder
from text_recognizer.networks.transformer.embeddings.axial import (
AxialPositionalEmbedding,
)
from text_recognizer.networks.conv_transformer import ConvTransformer
from text_recognizer.networks.quantizer.quantizer import VectorQuantizer
class VqTransformer(ConvTransformer):
def __init__(
self,
input_dims: Tuple[int, int, int],
hidden_dim: int,
num_classes: int,
pad_index: Tensor,
encoder: Type[nn.Module],
decoder: Decoder,
pixel_embedding: AxialPositionalEmbedding,
token_pos_embedding: Optional[Type[nn.Module]] = None,
quantizer: Optional[VectorQuantizer] = None,
) -> None:
super().__init__(
input_dims,
hidden_dim,
num_classes,
pad_index,
encoder,
decoder,
pixel_embedding,
token_pos_embedding,
)
self.quantizer = quantizer
def quantize(self, z: Tensor) -> Tuple[Tensor, Tensor]:
q, _, loss = self.quantizer(z)
return q, loss
def encode(self, x: Tensor) -> Tuple[Tensor, Tensor]:
z = self.encoder(x)
z = self.conv(z)
q, loss = self.quantize(z)
z = self.pixel_embedding(q)
z = z.flatten(start_dim=2)
# Permute tensor from [B, E, Ho * Wo] to [B, Sx, E]
z = z.permute(0, 2, 1)
return z, loss
def forward(self, x: Tensor, context: Tensor) -> Tuple[Tensor, Tensor]:
z, loss = self.encode(x)
logits = self.decode(z, context)
return logits, loss
|