blob: bdff9ebb5eb48cba094963c117b17d7a74557b61 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
"""Residual block."""
import attr
from torch import nn
from torch import Tensor
from text_recognizer.networks.util import activation_function
from text_recognizer.networks.vqvae.norm import Normalize
@attr.s(eq=False)
class Residual(nn.Module):
in_channels: int = attr.ib()
residual_channels: int = attr.ib()
use_norm: bool = attr.ib(default=False)
activation: str = attr.ib(default="relu")
def __attrs_post_init__(self) -> None:
"""Post init configuration."""
super().__init__()
self.block = self._build_res_block()
def _build_res_block(self) -> nn.Sequential:
"""Build residual block."""
block = []
activation_fn = activation_function(activation=self.activation)
if self.use_norm:
block.append(Normalize(num_channels=self.in_channels))
block += [
activation_fn,
nn.Conv2d(
self.in_channels,
self.residual_channels,
kernel_size=3,
padding=1,
bias=False,
),
]
if self.use_norm:
block.append(Normalize(num_channels=self.residual_channels))
block += [
activation_fn,
nn.Conv2d(
self.residual_channels, self.in_channels, kernel_size=1, bias=False
),
]
return nn.Sequential(*block)
def forward(self, x: Tensor) -> Tensor:
"""Apply the residual forward pass."""
return x + self.block(x)
|