1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
"""The VQ-VAE."""
from typing import Tuple
from torch import nn
from torch import Tensor
from text_recognizer.networks.vqvae.quantizer import VectorQuantizer
class VQVAE(nn.Module):
"""Vector Quantized Variational AutoEncoder."""
def __init__(
self,
encoder: nn.Module,
decoder: nn.Module,
hidden_dim: int,
embedding_dim: int,
num_embeddings: int,
decay: float = 0.99,
) -> None:
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.pre_codebook_conv = nn.Conv2d(
in_channels=hidden_dim, out_channels=embedding_dim, kernel_size=1
)
self.post_codebook_conv = nn.Conv2d(
in_channels=embedding_dim, out_channels=hidden_dim, kernel_size=1
)
self.quantizer = VectorQuantizer(
num_embeddings=num_embeddings, embedding_dim=embedding_dim, decay=decay,
)
def encode(self, x: Tensor) -> Tensor:
"""Encodes input to a latent code."""
z_e = self.encoder(x)
return self.pre_codebook_conv(z_e)
def quantize(self, z_e: Tensor) -> Tuple[Tensor, Tensor]:
"""Quantizes the encoded latent vectors."""
z_q, commitment_loss = self.quantizer(z_e)
return z_q, commitment_loss
def decode(self, z_q: Tensor) -> Tensor:
"""Reconstructs input from latent codes."""
z = self.post_codebook_conv(z_q)
x_hat = self.decoder(z)
return x_hat
def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
"""Compresses and decompresses input."""
z_e = self.encode(x)
z_q, commitment_loss = self.quantize(z_e)
x_hat = self.decode(z_q)
return x_hat, commitment_loss
|