summaryrefslogtreecommitdiff
path: root/text_recognizer/optimizers/laprop.py
blob: 9b4f4d459c0432b89fb140542ba9a58ccb365ede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""https://github.com/Z-T-WANG/LaProp-Optimizer/blob/master/laprop.py"""
from torch.optim import Optimizer
import math
import torch


class LaProp(Optimizer):
    def __init__(
        self,
        params,
        lr=4e-4,
        betas=(0.9, 0.999),
        eps=1e-15,
        weight_decay=0,
        amsgrad=False,
        centered=False,
    ):

        self.steps_before_using_centered = 10

        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            amsgrad=amsgrad,
            centered=centered,
        )
        super(LaProp, self).__init__(params, defaults)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError(
                        "Adam does not support sparse gradients, please consider SparseAdam instead"
                    )
                amsgrad = group["amsgrad"]
                centered = group["centered"]

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state["step"] = 0
                    # Exponential moving average of gradient values
                    state["exp_avg"] = torch.zeros_like(p.data)
                    # Exponential moving average of learning rates
                    state["exp_avg_lr_1"] = 0.0
                    state["exp_avg_lr_2"] = 0.0
                    # Exponential moving average of squared gradient values
                    state["exp_avg_sq"] = torch.zeros_like(p.data)
                    if centered:
                        # Exponential moving average of gradient values as calculated by beta2
                        state["exp_mean_avg_beta2"] = torch.zeros_like(p.data)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state["max_exp_avg_sq"] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
                if centered:
                    exp_mean_avg_beta2 = state["exp_mean_avg_beta2"]
                if amsgrad:
                    max_exp_avg_sq = state["max_exp_avg_sq"]
                beta1, beta2 = group["betas"]

                state["step"] += 1

                # Decay the first and second moment running average coefficient
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)

                state["exp_avg_lr_1"] = (
                    state["exp_avg_lr_1"] * beta1 + (1 - beta1) * group["lr"]
                )
                state["exp_avg_lr_2"] = state["exp_avg_lr_2"] * beta2 + (1 - beta2)

                bias_correction1 = (
                    state["exp_avg_lr_1"] / group["lr"] if group["lr"] != 0.0 else 1.0
                )  # 1 - beta1 ** state['step']
                step_size = 1 / bias_correction1

                bias_correction2 = state["exp_avg_lr_2"]

                denom = exp_avg_sq
                if centered:
                    exp_mean_avg_beta2.mul_(beta2).add_(1 - beta2, grad)
                    if state["step"] > self.steps_before_using_centered:
                        mean = exp_mean_avg_beta2**2
                        denom = denom - mean

                if amsgrad:
                    if not (
                        centered and state["step"] <= self.steps_before_using_centered
                    ):
                        # Maintains the maximum of all (centered) 2nd moment running avg. till now
                        torch.max(max_exp_avg_sq, denom, out=max_exp_avg_sq)
                        # Use the max. for normalizing running avg. of gradient
                        denom = max_exp_avg_sq

                denom = denom.div(bias_correction2).sqrt_().add_(group["eps"])
                step_of_this_grad = grad / denom
                exp_avg.mul_(beta1).add_((1 - beta1) * group["lr"], step_of_this_grad)

                p.data.add_(-step_size, exp_avg)
                if group["weight_decay"] != 0:
                    p.data.add_(-group["weight_decay"], p.data)

        return loss